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Abstract

Three decades ago, interactions between evolutionary biology and physiology gave

rise to evolutionary physiology. This caused comparative physiologists to improve their

research methods by incorporating evolutionary thinking. Simultaneously, evolution-

ary biologists began focusing more on physiological mechanisms that may help to

explain constraints on and trade-offs during microevolutionary processes, as well as

macroevolutionary patterns in physiological diversity.Hereweargue that evolutionary

physiology has yet to reach its full potential, and propose newavenues thatmay lead to

unexpected advances. Viewing physiological adaptations in wild animals as potential

solutions to human diseases offers enormous possibilities for biomedicine. New evi-

dence of epigenetic modifications as mechanisms of phenotypic plasticity that regu-

late physiological traits may also arise in coming years, which may also represent an

overlooked enhancer of adaptation via natural selection to explain physiological evolu-

tion. Synergistic interactions at these intersections and other areas will lead to a novel

understanding of organismal biology.
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INTRODUCTION

Since the first appearances of an identifiable field of evolutionary

physiology more than three decades ago,[1,2] both evolutionary biol-

ogy and physiology have benefited. Evolutionary biology has pro-

vided physiology with such tools as phylogenetic analyses,[3] selection

experiments,[4] and genetic/genomic analyses (e.g.,[5]). At the same

time, physiology and biochemistry have enhanced knowledge of the

functional mechanisms that underlie various evolutionary processes

and phenomena, including epigenetic inheritance, adaptation, allo-

metric relationships, trade-offs, constraints, and convergence.[6–10]

We believe, however, that evolutionary physiology, as originally

outlined,[11–13] has yet to reach its full potential. We provide a brief
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perspective on the field, from the outlook of vertebrate biologists,

with the goal of pointing the way towards its enhancement and mat-

uration. We would also direct readers to other papers that provide

partial reviews of evolutionary physiology and discussions of future

directions.[5,14,15]

Evolutionary physiology sits at the intersection of evolution, ecol-

ogy, and organismal biology (Figure 1). Most generally, physiology is

the study of how organisms work (we include within “physiology” such

related areas of biochemistry, neurobiology, endocrinology, functional

morphology, and biomechanics). Elucidating the mechanisms that

underpin organismal function does not require an explanation for their

origin, nor does it require an understanding of why these mechanisms

continue to be favored (or become disfavored) by ongoing natural or
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F IGURE 1 Modern evolutionary physiology resides in the intersection of evolution, ecology, and organismal biology

sexual selection in the wild, as dictated by ecological circumstances

(e.g., see Ref.[16]). Rather, understanding the origin and maintenance

of traits and characteristics at all levels of biological organization is the

provenance of evolutionary biology. Understanding the evolution of

physiological mechanisms equals understanding their causes at both

proximate and ultimate levels[17], which promotes comprehension of

factors that facilitate and constrain evolutionary processes (e.g., see
[18]), as well as the causes of and solutions to human pathologies.[19,20]

The influence of rigorous evolutionary thinking on physiology has

resulted in the rise of evolutionary medicine,[21] but it has also

led to more sophisticated analyses and approaches in non-medical

physiology.

We believe that the aims and scope of evolutionary physiology

should now be revisited to explore new possibilities derived from the

synergy between evolutionary biology and physiology. We first high-

light three now-familiar approaches in modern evolutionary physiol-

ogy, none of which were common three decades ago. We then provide

some examples illustrating how evolutionary thinking has influenced

physiology andvice versa, and in sodoingweproposenewavenues that

may lead to unexpected advances in both disciplines.

THREE WELL-ESTABLISHED APPROACHES IN
MODERN EVOLUTIONARY PHYSIOLOGY

Phylogenetically informed comparative studies

Of the various tools that evolutionary physiology has adopted from

evolutionary biology, none has had a greater impact than the use

of phylogenetic comparative methods.[22] These approaches were in

rapid development when comparative and ecological physiologists

were first encouraged to take advantage of them.[12,23] Formalized

procedures for phylogenetically-based statistical analyses[2224] have

caused a mini-revolution in evolutionary biology, and this has been

reflected in comparative physiology.[3,25] Phylogenetically informed

analyses have improved, for example, the understanding of the evolu-

tion of endothermy[26] and of diving,[27] and the diversity of photosyn-

thesis types in plants.[28]

Selection experiments and experimental evolution

Moving frommacroevolutionary to microevolutionary analyses, selec-

tion experiments, and experimental evolution in both laboratory

and field settings have provided unique insights regarding adaption,

coadaptation, and the genetic/genomic mechanisms of evolutionary

change.[4] For example, Lenski and colleagues had maintained 12 pop-

ulations of Escherichia coli in the laboratory for more than 25 years

and 60 000 generations.[29] Among various results, they discovered

a trade-off between growth on glucose and acetate involving two

metabolic “ecotypes” that can stably coexist. Each ecotype has a com-

petitive advantage when rare, which it loses when it becomes more

common.

As a vertebrate example, Garland and colleagues began replicated

artificial selection for voluntary exercise behavior in laboratory house

mice in 1993, and the experiment has now proceeded formore than 90

generations. Numerous correlated responses have been documented

at the levels of both motivation for physical activity and ability to
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sustain aerobic exercise, including increased endurance and maximal

oxygen consumption during forced exercise, changes in muscle size

and fiber type composition, skeletal alterations, endocrine changes,

and brain changes.[30–32] Together this body of work demonstrates

how behavior and morphology/physiology coadapt in response to

directional selection, multiple solutions in response to selection, sex-

specific responses for some traits, the evolution of adaptive plasticity,

changes in genetic correlations over time, possible causes of selection

limits, and genomic-level underpinnings of adaptive evolution. It also

has implications for humanhealth andwell-being in relation to exercise

physiology and addiction, the control of body weight, and the control

of physical activity.

Evolutionary and functional genomics

The low cost of sequencing has led to a genomic revolution that has

found its way into all approaches and areas of biology, including selec-

tion experiments and experimental evolution,[33] the study of adapta-

tion in natural populations,[34,35] and the study of human morpholog-

ical and physiological evolution.[36] As one example, the killifish, Fun-

dulus heteroclitus, has been a subject of studies in evolutionary genet-

ics, biochemistry, and physiology since the late 1970s (e.g., see refer-

ences in [12]). Overall, decades of studies have led to the conclusion

that evolutionary adaptation related to the glycolytic enzyme lactate

dehydrogenaseBhas involved small changes in theallele frequenciesof

many genes, and these changes are manifest at the levels of transcrip-

tion, biochemistry, metabolism, osmoregulation, and whole-organism

physiology.[37]

EVOLUTIONARY BIOLOGY INFLUENCES
PHYSIOLOGY

Non-model species widen knowledge in animal
physiology

Traditionally, and justifiably, physiology has focused on human beings

to find solutions to disease and other pathological conditions.[38] How-

ever, given the difficulty, cost, and ethical issues involvedwith conduct-

ing human studies, the use of “animal models” to elucidate aspects of

human physiology became widespread. Although other animal mod-

els are available for particular physiological processes (e.g., [39]), the

house mouseMus musculus is by far the most common animal model in

physiology, as it is in most biological sciences.

Early studies in comparative physiology recognized that the neglect

of among-species comparisons was retarding the progress of physiol-

ogy and pathology,[40] but still usually had elucidation of human phys-

iology as the ultimate goal. And comparative physiology has a long

history of contributions to basic physiology, including relevance to

humans[20]. For example, Mathew Kluger’s studies of thermoregula-

tion andbehavioral fever in lizards [41] andFredWhite’s studies of acid-

base balance during hypothermia in reptiles (references in [12]) have

affected the way physicians view and treat human patients.

Although the majority of animal physiological research has at least

an implicit focus on human beings, evolutionary biology addresses all

biological diversity. Therefore, by not limiting studies to humans, mice,

and other laboratory animals, evolutionary biology necessarily consid-

ers physiological systems different from those represented by tradi-

tional animalmodels. This represents an opportunity towiden the gen-

eral knowledge on animal physiology, and to find unsuspected ways to

treat human pathology that could not be approached with traditional

animal models (e.g., see [20]). Beyond species that produce substances

such as venoms that are useful for the preparation of drugs,[42] many

wild non-model species present physiological processes that are sim-

ilar to those of humans, and sometimes have superior performance

through unique adaptations. Such species represent a great potential

to offer solutions to human pathology.

Unique physiological adaptations in non-model
species

Many species of frogs store in their skin an extraordinary diversity of

biologically active peptides at high concentrations, and many of these

have mammalian counterparts, thus representing a source for discov-

ering new hormones, neuropeptides, and peptide-processing enzymes

thatmight not be as readily foundwith conventional animalmodels.[43]

Several species of songbirds and teleost fishes have unusually high lev-

els of aromatase activity that make them interesting models to under-

stand the mechanisms of estrogen synthesis.[44] Wild rodent species

have been proposed as a resource for research on immunity and infec-

tion, given their high genetic diversity and environmental pressures to

which they are exposed as compared with laboratory rodents.[45] In

1971, it was found that fox squirrels (Sciurus niger) accumulate large

amounts of the pigment uroporphyrin I in internal organs and the skin

due a very low activity of the enzyme uroporphyrinogen III synthase

in different tissues under healthy conditions.[46] In humans, congeni-

tal erythropoietic porphyria is caused by a defect in uroporphyrinogen

III synthase that leads to a similar low enzymatic activity and uropor-

phyrin I overproduction, which allowed researchers to propose the fox

squirrel as an animal model for this disease.[46] The Honduran white

bat (Ectophylla alba) has recently been reported as the first mammal

that has evolved the physiological capacity to esterify and deposit high

amounts of carotenoid pigments in the skin, thus constituting a model

that may help to improve the assimilation of carotenoids in humans

and avoid macular degeneration.[47] The study of all these species was

notprimarilymotivatedbyphysiological questions. Instead, these stud-

ies were started by researchers investigating evolutionary and ecolog-

ical aspects of the species (e.g.,[48]), and interest in physiology arose

later.

Aging in non-model species

Non-model species have also contributed to our understanding of the

process of aging. How animals age is determined by the failures of

physiological processes. Understanding why different physiological
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processes fail faster or slower in different organisms can bring insight

to the evolution of cellular protection and repair processes, as well as

the evolution of life histories.[49] For example, a comparison across

18 rodents species with lifespan ranging from two (mice) to 30 years

(beavers) determined that the ability to repair double-strand breaks

in DNA (via SIRT6) is a tight correlate of long lifespan.[50] The levels

of IGF1 hormone has long been recognized as a biomarker of aging.

Although humans also express the paralogous hormone IGF2 at high

levels as adults,[51] biomedical rodent models do not,[52] resulting in

this hormone being understudied in the context of senescence. Recent

studies demonstrate that reptiles and birds express IGF2 at high levels

in adulthood,[53,54] similar to humans, providing newmodel systems to

study the physiological effects of this hormone in adulthood.

Tissue regeneration in non-model species

Manynon-model species exhibit regenerative abilities that are coveted

by the biomedical community.[55] Within vertebrates, there is consid-

erable diversity in the degree to which a species can regenerate tis-

sue and which types of tissues can be regenerated,[56] with a clear

phylogenetic signal of reduced regenerative abilities moving from fish

and amphibians to amniotes and then to mammals. Some species of

fish and amphibians have incredible regenerative capacities, including

whole limbs, eyes, and internal organs.[56] In newts, for example, after

the complete removal of the lens from the eye, the lens can be regen-

erated de novo from the dorsal iris cells that can undergo a dedifferen-

tiation process. [57] Within reptiles the regenerative diversity is more

restricted; the best known example being tail regeneration in many

lizard species that is associated with autotomy as an anti-predator

defense. But brain tissue and optic nerve regeneration has also been

demonstrated in lizards.[58] Snakes, which are derived from lizards,

have lost the ability to regenerate their tails, but somehave rapid organ

regeneration. For example, pythons may go months without feeding,

duringwhich time their digestiveorgans regress in size.Withinhours to

days of refeeding, the intestine regenerates thorough hyperplasia and

hypertrophy to accommodate the physiological demands of processing

the meal.[59] In contrast, significant regeneration in adult mammals is

largely restricted to the liver[60] and antler regeneration in deer,[61]

whereas other types of limb loss and tissue damage typically result

in scarring. Comparative studies across these non-model species have

begun to illuminate common factors in exceptional regenerative abili-

ties, including the maintenance of juvenile physiology or the ability to

reactivate an embryonic cellular program, and the need for the regen-

erating tissues to “hide” from the immune system similar to cancerous

tumors.[62]

Examples like those described in the previous paragraphs, with

an identified potential to provide solutions to specific human health

issues, do not abound in the literature. Furthermore, the utility of these

cited systems to widen general physiological knowledge is only begin-

ning to be considered, and only in some cases.[63] A remarkable exam-

ple is the fox squirrelmentioned above, whichwas proposed as amodel

for human congenital erythropoietic porphyria in the 1970s, with a

great potential to provide insights into physiological mechanisms that

avoid the toxicity of porphyrin accumulation,[46] a proposal that has

been overlooked. The use of physiological systems represented inwild,

non-model species of animals studied by evolutionary biologists cer-

tainly remains an underexplored and promising area for physiologists,

especially given that model and non-model species may differ in sys-

tematic ways.[64]

Physiological characteristics affect the capacity for
physiological adaptation

The concept of adaptation is central to biology, but the term has been

used across fields in two distinct ways.[30,65] First, “evolutionary adap-

tation” refers tomulti-generational changes in the allele frequencies of

populations in response to natural selection on a particular trait, which

could be physiological. Second, “physiological adaptation” has been

used in some fields of research to refer to changes that occur within

individuals in response to external (or internal) stimuli and that lead to

homeostasis and/or improved abilities to perform various tasks and/or

improvedDarwinian fitness.[66] This second usage encompasses “accli-

mation” (in the lab) and “acclimatization” (in the wild). Thus, “physio-

logical adaptation” is one aspect of phenotypic plasticity — defined as

the ability for an individual’s genome to produce different phenotypes

in response to varied environmental conditions. This response is also

referred to as a reaction norm. It is important to recognize that some

plastic responses to external stimulimaynot bebeneficial,whichwould

cause strong selection on the plastic response to undergo evolution-

ary adaptation to alter the response (with one possible endpoint being

a non-responsive trait). In other words, if sufficient genetic variation

is available in the response, then selection is expected to change the

shape of the reaction norm over generations.[67] In this way, the capac-

ity forphysiological adaptation is, of course, adaptive in anevolutionary

sense. In any case, the mechanistic basis of all evolutionary adaptation

is necessarily physiological at some level.[68]

Evolutionary studies that include examination of physiological

adaptation (i.e., a potentially beneficial response to external stim-

uli) illustrate the potential to discover the mechanisms by which

organisms cope with fluctuating environments, as well as directional

climate change (e.g., [69]). In 16 species of birds inhabiting Cher-

nobyl, for example, physiological adaptation occurs in the systemic

levels of the master cellular antioxidant (glutathione, GSH) and in

the capacity to avoid DNA damage as a response to exposure to

ionizing radiation, which generates oxidative stress.[70] The degree

of this adaptation, however, depends at least in part on the amount

of the pigment pheomelanin that birds produce in their plumage, as

pheomelanin synthesis consumes cysteine (a constitutive amino acid

of GSH), produces free radicals upon radiation exposure, and may

thus cause chronic oxidative stress.[70] Although these studies do not

demonstrate the exact mechanism by which physiological adaptation

in response to ionizing radiation occurs, they do clearly show that

antioxidant-demanding processes, such as pheomelanin synthesis, can

be constraining factors in physiological adaptation.
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The foregoing avian example illustrates that some characteristics of

organisms limit their ability for physiological adaptation. For instance,

as in many other organisms, the production of heat-shock proteins is a

common response of notothenioid fishes against thermal stress, as this

allows restoration of heat-denatured proteins.[71] The activation of

this stress response requires modulating the expression of genes that

regulate heat-shock protein production in a temperature-dependent

manner. However, some species with an evolutionary thermal history

that has not favored phenotypic plasticity for temperature-mediated

gene expression are limited in their ability to acclimate to increased

temperatures.[72]

Similarly, the exposure of birds and mammals to hypoxia activates

changes in the expression of some genes that affect O2 transport and

erythropoiesis, but the performance of this physiological adaptation

depends on whether the animals are previously acclimatized to living

at low or high altitudes.[73] These sorts of characteristics of organ-

isms can be viewed as endogenous constraints and they exemplify how

the evolution of certain traits helps explain the capacity of animals to

achieve physiological adaptation to the environments where they live,

both in terms of phenotypic plasticity and cross-generational genetic

changes.[37,65] Detailed investigations of the mechanisms that facili-

tate or constrain the ability for physiological adaptation are an excit-

ing future direction for evolutionary physiology and may also facilitate

finding solutions to diseases related to allostatic load.[74]

Although the examples above come from vertebrate physiology,

where our research experience falls, invertebrate studies have also

provided great insights into evolutionary physiology (see, e.g., review

in [75]). For example, studies of wing-polymorphic crickets have shown

that different morphs synthesize different compositions of lipids and

allocate them to different tissues, which underlie the existence of

alternate life histories.[76] In Rhagoletis flies, recent evolutionary shifts

between host plants with different seasonality change transcripts

that participate in development during diapause, influencing life cycle

adaptation.[77] Physiological adaptation associated to photoperiodism

varies with different genetic responses to day length in other insects,

revealing complex genetic and physiological characteristics that medi-

ate daily rhythms.[78] Other studies provide insight into how natural

variation in certain characteristics of insects affects thermal adapta-

tion. This is the case in Colias butterflies, whose altitude-related varia-

tion inwing solar absorptivitiesmediates the ability to achieve thermal

adaptation under fluctuating environmental conditions, such as wind

speed.[79] Studies on willow leaf beetles show that thermal physi-

ological stress effects on mating activity differ between genotypes

associated with the glycolytic enzyme phosphoglucose isomerase.[80]

PHYSIOLOGY INFORMS EVOLUTIONARY BIOLOGY

The evolution of honest signals has a physiological
basis

Biological communication is mainly driven by signals, traits that evolve

because of the benefits obtained by their recipients.[81] When signals

can allow the Darwinian fitness (reproductive success) of their recipi-

ents to improve, they are considered “honest.” This appears to be the

case formost biological traits that fulfill a signaling role.[82] Signal hon-

esty is closely related to the concept of individual quality. As stated in

the handicap principle, a cornerstone of behavioral ecology, the pro-

duction of large (expensive) signals is limited to high-quality signalers

because low-quality ones cannot afford the costs derived from sig-

nal production.[83] However, this explanation has been challenged in

recent years because costs for low-quality individuals are frequently

not found in empirical studies, and, indeed, natural selection is not

expected to favor the evolution of signalswhen it implies incurring sub-

stantive costs.[84] As a consequence, the existence of costs predicted

by the handicap principle is not fully accepted by evolutionary biology,

which currently lacks an integrated approach to explain the concept of

individual quality and the evolution of honesty.

Recent physiological experiments on the classical honest signal-

ing system of the black bib of male house sparrows (Passer domesti-

cus) illustrate the possibility that costs are not necessary to explain

why low-quality individuals do not develop high-quality signals (i.e.,

large bibs). Large bibs are associated with low amounts of the pigment

pheomelanin in their constitutive feathers, which allows researchers

to experimentally create physiological conditions that favor the pro-

duction of small or large bibs by exposing birds to substances that

act as inhibitors or enhancers of pheomelanin synthesis.[85] Despite

these induced physiological conditions, the resulting phenotype could

be manipulated in high-quality birds (i.e., those with largest bibs ini-

tially) only. A physiological mechanism may therefore exist in low-

quality individuals that make them less sensitive to environmental fac-

tors than high-quality individuals, which prevents low-quality individu-

als from producing high-quality signals even if they took the “decision”

to do so or if environmental conditions favored the production of large

signals.[85]

The experiments on the signaling system of male house sparrows

exemplify how the details of the machinery controlling the expression

of signals can explain their honesty without the costs predicted by the

handicap principle. Although specific to visual traits whose production

is mediated by the synthesis of melanin pigments, these experiments

show that the evolution of honesty can have a physiological basis. Simi-

lar studies on the physiological basis of trait production in other honest

signaling systems, including those in humans,[86] may provide a more

general concept of individual quality and consequently represent anew

understanding of this aspect of biological communication.

Elucidating the physiological underpinnings of
evolutionary adaptations

As evolutionary adaptations directly depend on functional aspects of

organisms, physiology, and related fields have the potential to provide

a conjectural background to understand them (e.g., see [87]). A diversity

of approaches in evolutionary physiology can be used to identify the

mechanisms by which adaptations arise (e.g., see [6,12,13,18,35,37,65,68]).

These approaches include direct gene editing of genes underlying
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adaptations, genomic analyses of phenotypes resulting from selec-

tion (natural, artificial, or experimental), contrasting repeated evolu-

tionary events of physiological phenotypes using physiological exper-

iments, and the application of physiological knowledge to evolution-

ary adaptations. We provide examples for these below and in Box

1, including simple economical ideas that have been used to under-

stand the evolution of pigmentation phenotypes[88] and theories of

sensory cue integration to understand the evolution of perception

capacity.[89]

Research methods in physiology have always strongly relied on

experimental manipulations of biological processes[90] and the advent

of molecular tools, such as CRISPR, allow manipulations at the level of

the genome to prove physiologicalmechanisms. Although evolutionary

adaptations have been linked to specific genes in a growing number of

cases (e.g., [7,91–93]), typically these genes fit in to molecular networks

— interactions among genes, proteins, and RNAs that are coordinated

within the cell — to regulate physiological outcomes. Selection acting

on a larger network makes it much harder to detect effects on partic-

ular loci because the impact can be shared across loci with relatively

small effect, and the probability of pleiotropic effects is high in a net-

work. Moreover, the experimental manipulation of multiple genes con-

currently to understand their physiological effects is much more diffi-

cult than changing single genes.

Rather than attempting to manipulate genes directly, selection

experiments focused at behavioral or other whole-organism levels

can be used to understand how evolution can bring about adaptations

through shaping of a molecular network. Dogs are a great example,

having been under artificial selection for thousands of years, resulting

in breeds defined by form, function, and behavior.[94] The evolutionary

response to selection that targeted growth, strength, and body size

has involved the insulin and insulin-like signaling (IIS) network.[95]

This molecular network integrates over 100 genes, and this network

has been studied extensively for its pleiotropic effects on both early

(growth and reproduction) and late life (rate of aging) traits in various

model organisms.[96] Selection has sorted alleles by dog breed for at

least seven loci, and most of these genes are in or related to the IIS

network.[95] The allelic variation at these seven loci explains over 50%

of the variation in body size among breeds. Together, in the context

of the function of the IIS network on the cellular and organismal

physiology, the alleles in the small-bodied breeds (e.g., Chihuahua)

reduce the cellular signaling through IIS network resulting in the

correlated phenotypes of small body, small litters, and longer lifespans

relative to the larger breeds (e.g., Mastiff).[95,97]

Sensory systems also provide clear illustrations of how physiolog-

ical knowledge helps us to understand evolutionary adaptations (see

also examples in [6]). In the most general sense, the sensory percep-

tion of organisms depends on their physiological allocation to the sys-

tems involved. This physiological allocation differs among species and

even individuals, but this does not mean that perceived objects are

only the product of neuronal activity or that the brain produces real-

istic models without capturing reality itself. The chromatic experience

of animals, for example, is not only a type of neural state or process,

but also reflects to a large degree the color of the objects being per-

ceived as a physical attribute of these objects. Color perception is thus

the combination of an objective and a subjective experience, the latter

greatly influencing the ecological/evolutionary implications of perceiv-

ing the color of given objects.[98] Color interpretation in some evolu-

tionary studies has been made in a way that gives much weight to the

subjective component of color perception (e.g., “Color is not an inher-

ent property of the object; it is a product of the brain of the animal

perceiving the object,”[99]), but it must be remembered that color is

also a physical attribute of the objects. Considering the objective com-

ponent of color perception may be useful in interspecific comparisons

of animal coloration, and thus provide clues into the adaptiveness of

color traits. Indeed, human vision can detect much of the variation in

bird coloration in the visible range and also provide a valid proxy for

avian perception of such color traits as sexual dichromatism,[100,101]

suggesting that considering color exclusively as a neural state may be

an incomplete view. That color resides in both the objects being per-

ceived and in the brain of the perceiving animals is known in neu-

roscience since the 1990s, notably through the work of Francisco J.

Varela and others.[98,102] Considering this theoretical background of

sensory physiology may therefore help in gaining a deeper insight into

the adaptive value of color phenotypes.

In addition statistical analyses are essential to detect patterns in

physiological data.[90] It is important, however, that evolutionary infer-

ences from physiological data are not exclusively dependent on statis-

tics, in the sense of using only data that are devoid of clear functional,

physiological meaning. Evolutionary biologists should take advantage

of research approaches in physiology and related functional fields that

allow less dependence on statistics. For example, several studies have

reconstructed ancestral proteins and measured or inferred their func-

tional characteristics to gain insight regarding physiological adaptation

(e.g., [103,104]).

THE ROLE OF EPIGENETICS IN PHYSIOLOGICAL
AND EVOLUTIONARY ADAPTATION

Use of the term “epigenetic” has changed over time, but currently it

usually refers to chemical modifications on the DNA, RNA, or asso-

ciated proteins that regulate the genome (and thereby the expres-

sion of genes), without changes in the DNA sequence. In the last 30

years, the molecular basis for how epigenetic modifications can result

in phenotypic plasticity has been revealed in different organisms.[105]

Such epigenetic plasticity can be induced by environmental fac-

tors, and such alterations have been identified as important mech-

anisms underlying physiological adaptation of organisms to a diver-

sity of environments.[106] Epigenetic plasticity thus acts as a potential

enhancer of physiological adaptation. Examples of this are studies of

teleost fish where a concerted role for DNA methylation and histone

modifications induced by hypoxia, thermal stress, osmotic challenges,

and starvation has been shown to regulate the expression of genes

involved in, respectively, apoptosis, folate metabolism, osmotic stress

transcription factors and autophagy.[107] Such changes may facilitate

physiological adaptations to environmental conditions and, in some
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Box 1. The use of cross-organism integration to understand physiological evolution

The use of wild species and the integration of findings across organisms is a powerful but underutilized approach to understanding physi-

ological evolution. Herewe provide two examples of howwe think this has been donewell and can provide roadmaps for others to utilize

this approach.

Example 1: Tracking metabolic pathways in different organisms, for example, provides insight into the adaptive value of metabolic prod-

ucts. This is the case of biological pigments, whose whole chemical diversity can be categorized into three common synthesis routes after

tracking themacross all organisms, suggesting common functional roles.[131] Melanins, pigments that are the result of oneof these routes,

are probably synthesized by all organisms. From bacteria to humans, broad optical absorption properties make melanins exert a uni-

versal protecting role against cellular damage caused by solar UV radiation.[132] Carotenoid pigments resulting from another synthesis

route, are synthesized by photosynthetic organisms that benefit from the charge transfer properties of these pigments, which facilitate

photosynthesis under exposure to sunlight. Animals that take carotenoids with food, such as insects,[133] benefit from the same proper-

ties to quench free radicals and possibly from enhancing properties of the mitochondrial function and thus protect cells from oxidative

stress[134] as do birds and other organisms as the cartenoids pass up the food chain.[135] Lastly, porphyrins, pigments corresponding to

the third route, fulfill a key role in all vertebrates by acting as intermediates in the synthesis of heme.[130] Marine invertebrates also syn-

thesize porphyrins, and although their physiological role in these groups is unknown, it is likely to be related to the essential role exerted

in vertebrates.[136]

Example 2. The mechanistic basis of evolutionary adaptations to high altitude and hypoxia resistance has been informed by genomics

studies across species, frommammals and birds to insects.[137–139] The integrated knowledge across these studies reveals the common-

alities of approaches that evolution has taken and thereby revealing the higher-order constraints in the physiological system. Compiled

across species, the genes underlying the physiological processes of oxygen transport, metabolic processes, and the hypoxia-inducible fac-

tor pathwayare someof themost prominent targets of selection for living in high altitudeenvironments. In somecases, the samegenes are

being targeted across species, in other cases different genes in the same process are targets. Genetic variants in and around these genes

have been found to be segregating across high and low-altitude populations, and functional studies have demonstrated their importance.

Contrasting across these studies reveal the diversity of mechanisms that has been used by evolution to manipulate hypoxia tolerance

at many biological levels to achieve similar adaptive benefits to living at high altitude conditions. In some species and populations, the

genetic variants differentially regulate transcription of the genes in response to the high-altitude, and thereby altering the amount of the

protein product produced in those conditions relative to low-altitude species; in other cases, they alter the amino acid sequence to affect

the function of the protein. To illustrate these points, in the figure belowwe highlight a small subset of the genetic variants that have been

identified across different species involved in the evolutionary adaptation to living in high altitude environments (see more extensive

reviews[137–139]).
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cases, also affect external phenotypic traits on which selection can act

(for another example, see Box 2).

If the epigenetic plasticity is inherited, this may provide an addi-

tional, accelerated pathway for evolutionary adaptation.[108] For

example, the response to hypoxia involves epigenetic modifications to

open the chromatin at regulatory elements to allow transcription of

genes, such as EPAS1.[109] A change in the timing of this chromatin

opening during the hypoxia response appears be part of the adaptive

response to hypoxia in Tibetan relative to Han human populations[109]

(also see Box 1).

Epigenetic modifications can be transmitted across generations

and be an important component of preparing the next generation

for the parental environment. In these cases of “epigenetic inheri-

tance,” the modifications that occur in response to environmental con-

ditions in the parents are passed on to offspring or even subsequent

generations.[110] The importance of epigenetic inheritance in the con-

text of evolution is strongly debated.[111,112] Intergenerational inheri-

tance (where the embryo and its germline are directly exposed to the

parental environment while in utero/in ovo) is quite common. In this

context, Danchin and Pocheville[113] have made the important claim

that “non-genetic inheritance shatters the frontier between physiol-

ogy and evolution, and leads to the coupling of physiological and evolu-

tionary processes to a point where there exists a continuum between

accommodation by phenotypic plasticity and adaptation by natural

selection."

Transgenerational epigenetic inheritance, in which the epigenetic

marks and consequential phenotypes persist to the generation that

has not had direct exposure to the epigenetic defining environment,

is prevalent in yeast and plants. But transgenerational epigenetic

inheritance occurs substantially less in other organisms,[114] partic-

ularly in sexually reproducing species where the germline is sepa-

rated from the soma, DNA methylation is globally reduced twice

in each generation, and histone marks are reprogrammed in the

germline and after fertilization. In vertebrates, mechanisms such as

histone retention in sperm and ncRNAs are the more likely can-

didates for transgenerational inheritance.[110] Although evidence of

environmentally induced transgenerational epigenetic inheritance in

vertebrates is limited, it has been experimentally demonstrated in

some species, including rodents,[115] and has been documented in

humans,[114] although typically associated with unhealthy or dis-

ease phenotypes rather than adaptive responses. For example, in

rats, DNA hypermethylation induced by chronic stress exposure has

been shown to be transgenerational inheritance to at least three

generations.[116] Additionally, injection of herbicides in rats has been

demonstrated to cause transgenerational effects (4th generation)

via the alteration of histone retention in sperm that associate with

diseases.[117]

Epigenetic modifications regulate physiological responses that

selection acts on. This link between physiology and evolution agrees

with West-Eberhard’s[118] idea that genes are “followers” rather than

initiators of evolutionary change, when they stabilize phenotypic

(physiological) changes that are started by epigenetic processes. Fol-

lowing this idea, epigenetic inheritance has a high potential to affect

Box 2. Environmental epigenetics of pigmentation genes

Expression of the pigment pheomelanin in melanocytes of

developingEurasiannuthatches Sitta europaea is regulated, in

part, by some genes of cysteine metabolism whose expres-

sion can be affected by two environmental factors defined

at the top of the diagram: availability of cysteine in the

diet and perceived predation risk. At the physiological level,

excess dietary cysteine alters the expression of these genes

by modifying DNA and RNA methylation levels, promot-

ing pheomelanin synthesis and resulting in flank plumage

patches of increased pigmentation intensity. In this way, the

epigenetic changes promote usage of the excess cysteine

for pheomelanin synthesis. The excess cysteine would oth-

erwise cause cellular oxidative stress, thus the epigenetic

changes are physiologically adaptive in an environment that

is rich in dietary cysteine.[153] Higher levels of perceived pre-

dation risk produce opposite changes in the expression of

these genes, limiting pheomelanin synthesis and resulting in

flanks of reducedpigmentation intensity. As cysteine is a con-

stituent amino acid of the main cellular antioxidant (i.e., glu-

tathione, GSH), these changes may also be adaptive because

they increase the antioxidant capacity and thus allow the

animal to avoid oxidative stress/damage expected from pre-

dation risk.[154] At the level of evolution, these changes in

the pigmentation of nuthatches have consequences for sex-

ual selection, as adult femalesmate preferentially withmales

showing flanks of reduced pigmentation intensity.[155] Thus,

the physiological responses to perceived predation risk lead

to reduced pigmentation intensity, in addition to providing

immediate physiological benefits, and are probably favored

by sexual selection.
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F IGURE 2 The future of evolutionary physiology should embrace new technologies and additional subfields. In addition, the reciprocity
between evolutionary biology and physiology needs to proceed under an unbiased interdisciplinary approach that widens the skills of scientists in
both fields, from the view that all physiological processes are the result of evolution. Foreseen advances in the field of evolutionary physiology
include enhancedmechanistic climatemodeling, the use of wild animal adaptations to informmedical treatments, andmechanistic linking of many
physiological traits to evolutionary fitness

phenotypic evolution, because epigenetic variation may facilitate the

role of natural selection in overcoming stochastic loss of new heritable

variants.[119]

CONCLUSIONS AND OUTLOOK

We are optimistic about the future of evolutionary physiology. The

future will include embracing other subfields and new research areas

(e.g., Figure 2) not often viewed as part of “evolutionary physi-

ology.” For example: study of the microbiome and its influences

on physiology and the coevolution of organisms and their micro-

biota (e.g., [120–122]); evolutionary epigenetics to explain the mech-

anistic bases of phenotypic plasticity and the evolution of reac-

tion norms; integration of -omics technologies and systems biology

to facilitate understanding of physiology across hierarchical levels

of biology[123]; infusion of physiological analyses into comparative

biomechanics/functional morphology/ecomorphology[124]; technolog-

ical advancements like CRISPR to experimentally test the function of

physiologically relevant genes and their impact on organismal fitness.

Another opportunity is expanded use of wild species and integration

of findings across organisms (e.g., animals, plants, bacteria) to reach

a more general understanding of physiological evolution (examples in

Boxes). Although this suggestion has been made before (e.g., [125]), lit-

tle cross-organism integration is evident.

We envision great strides in several areas. First, the linking of

physiological traits to evolutionary fitness, across hierarchical lev-

els from genes to ecosystems, in a causal way to inform mecha-

nisms of evolutionary adaptation, constraint, and diversification (e.g.,
[26,27,124,126–129]). Second, the use of adaptations in wild animals to

develop new strategies for combating diseases and injuries.[130] And

finally, the development of mechanistic models for the physiologi-

cal responses (and their evolution) of animals (wild, agricultural, and

humans) to extreme external stressors they may encounter with cli-

mate change. Although these future achievements are within sight,

equally exciting are the unforeseen advances that will undoubtedly

unfold over as these opportunities are embraced by the next genera-

tion of evolutionary physiologists.
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