The primate semicircular canal system and locomotion

Fred Spoor*, Theodore Garland, Jr.,†, Gail Krovitz‡, Timothy M. Ryan§, Mary T. Silcox¶, and Alan Walker∥

*Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; †Department of Biology, University of California, Riverside, CA 92521; ‡eCollege, 4900 South Monaco Street, Denver, CO 80237; ∥Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802; and §Department of Anthropology, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, Canada R3B 2E9

Contributed by Alan Walker, May 8, 2007 (sent for review December 23, 2006)

The semicircular canal system of vertebrates helps coordinate body movements, including stabilization of gaze during locomotion. Quantitative phylogenetically informed analysis of the radius of curvature of the three semicircular canals in 91 extant and recently extinct primate species and 119 other mammalian taxa provide support for the hypothesis that canal size varies in relation to the jerkiness of head motion during locomotion. Primate and other mammalian species studied here that are agile and have fast, jerky locomotion have significantly larger canals relative to body mass than those that move more cautiously.

In addition to the overall scaling pattern, it is clear from past studies that valuable information about locomotion is present in the plots of \( \log_{10} \) canal size against \( \log_{10} \) BM as well. A number of early researchers suggested, on empirical evidence, that the size of the canals reflects some quality of an animal’s behavior. Gray (12), for instance, noted that sloths have very small canals for their body size and suggested that this correlated with their sluggish movements. Likewise, canals were reported as large in highly maneuverable birds, and small in species with more stable flight (13–15). Subsequent studies (9, 16–20) examined such comparative observations quantitatively by measuring the length of the membranous duct or, as a proxy, the arc radius of curvature of the surrounding canal, and by interpreting the results in the context of biomechanical models that link this trait with properties of the canal system such as its mechanical sensitivity (21–23). These previous studies were hampered by the use of limited comparative data sets, often compiled from sources with dissimilar measurement definitions, and full statistical analysis of the results was therefore not possible. Nevertheless, for primates, it was found that, once body size is accounted for, species that were acrobatic or that had very rapid locomotion clearly had larger canal arc sizes than those that were cautious or slow in their movements (9, 17, 18). It was these preliminary findings that encouraged us to undertake the present study, hoping both to document the relationship between semicircular canal size and locomotor agility as a basic biological phenomenon of this sensory system, and to provide a means for future development of analytical tools to assess the locomotor behaviors of extinct primate species, independent of postcranial evidence. To this end, by using comprehensive and phylogenetically informed statistical analyses, we examined the relationship between canal arc size and locomotion in a large comparative database.

Results

Conventional Regression. Conventional multiple regressions on both the primate and full mammalian samples indicate significant positive effects of \( \log_{10} \) BM and \( \log_{10} \) AGIL (AGIL) on the log10 radius of curvature of all three semicircular canals and the mean canal radius (Tables 1 and 2). Based on the natural logarithm (ln) maximum likelihood (ML) estimates obtained for both samples, the correlations are strongest for the mean canal radius (Fig. 1). The relationships between \( \log_{10} \) canal radius and \( \log_{10} \) BM were strongly negatively allometric (i.e., slopes less than one-third) in all analyses (Tables 3 and 4). All

*Author contributions: F.S., T.G., M.T.S., and A.W. designed research; F.S., G.K., T.M.R., and M.T.S. performed research; F.S., T.G., T.M.R., and A.W. analyzed data; and F.S., T.G., T.M.R., M.T.S., and A.W. wrote the paper.

The authors declare no conflict of interest.

Freyly available online through the PNAS open access option.

Abbreviations: AGIL, locomotor agility; AIC, Akaike information criterion; BM, body mass; CT, computed tomography; GLS, generalized least squares; ML, maximum likelihood.

†To whom correspondence should be addressed. E-mail: axw8@psu.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0704250104/DC1.

© 2007 by The National Academy of Sciences of the USA
Table 1. Results of multiple regression with log_{10} semicircular canal radius as the dependent variable against log_{10}BM and log_{10}AGIL for primates

<table>
<thead>
<tr>
<th>Canal</th>
<th>Model</th>
<th>ln ML</th>
<th>AIC</th>
<th>MSE</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCR</td>
<td>Star</td>
<td>146.7</td>
<td>−285.4</td>
<td>0.00241</td>
<td>0.0491</td>
</tr>
<tr>
<td></td>
<td>GLS Pagel’s $\lambda = 0.907$</td>
<td>159.3</td>
<td>−308.7</td>
<td>0.00183</td>
<td>0.0427</td>
</tr>
<tr>
<td>PSCR</td>
<td>Star</td>
<td>169.5</td>
<td>−330.9</td>
<td>0.00146</td>
<td>0.0382</td>
</tr>
<tr>
<td></td>
<td>GLS Pagel’s $\lambda = 0.774$</td>
<td>175.4</td>
<td>−340.7</td>
<td>0.00128</td>
<td>0.0358</td>
</tr>
<tr>
<td>LSCR</td>
<td>Star</td>
<td>165.8</td>
<td>−323.5</td>
<td>0.00158</td>
<td>0.0398</td>
</tr>
<tr>
<td></td>
<td>GLS Grafen’s $\rho = 0.349$</td>
<td>172.9</td>
<td>−335.9</td>
<td>0.00136</td>
<td>0.0368</td>
</tr>
<tr>
<td>SCR</td>
<td>Star</td>
<td>172.7</td>
<td>−337.5</td>
<td>0.00136</td>
<td>0.0369</td>
</tr>
<tr>
<td></td>
<td>GLS Pagel’s $\lambda = 0.885$</td>
<td>182.0</td>
<td>−353.9</td>
<td>0.00111</td>
<td>0.0333</td>
</tr>
</tbody>
</table>

Results are shown under the “star” model, which uses conventional regression analysis with no phylogenetic correction and under branch length transformations used in phylogenetic GLS models. Both Pagel’s $\lambda$ and Grafen’s $\rho$ are methods for estimating how well the phylogeny fits the observed variation in species tip values. ASCR, anterior semicircular canal radius; LSCR, lateral semicircular canal radius; MSE, mean squared error; PSCR, posterior semicircular canal radius; SCR, average semicircular canal radius; SEE, standard error of the estimate.

95% confidence intervals for regression slopes included 0.14 to 0.15 as reported previously for primates and other mammals (9, 20) and excluded 0.33, which would indicate isometry. The positive and statistically significant regression coefficients for log_{10}AGIL indicate that, after controlling for variation in canal radius correlated with body size, the radius increases with increasing agility of locomotion, as hypothesized.

**Phylogenetic Generalized Least-Squares (GLS) Regression.** GLS analyses confirmed the results of the conventional multiple regressions. In all cases, the Akaike information criterion (AIC) was lower for GLS models than for conventional analyses, thus indicating a strong phylogenetic signal in the semicircular canal data even after controlling statistically for associations with body mass and agility. Both log_{10}BM and log_{10}AGIL had strong positive effects on canal radius of curvature for all three canals of both the primate and full mammalian samples (Tables 1 and 2). The slopes and their 95% confidence intervals (calculated for GLS with divergence times) for each canal and the mean canal versus log_{10}BM fell within the range of those from the conventional multiple regression and again excluded isometry (Tables 3 and 4). The regression coefficient for log_{10}AGIL was positive in all cases, indicating that canal size increases with increasing agility of locomotion.

Table 2. Results of multiple regression with log_{10} semicircular canal radius as dependent variable against log_{10}BM and log_{10}AGIL for all mammals

<table>
<thead>
<tr>
<th>Canal</th>
<th>Model</th>
<th>ln ML</th>
<th>AIC</th>
<th>MSE</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCR</td>
<td>Star</td>
<td>265.6</td>
<td>−523.2</td>
<td>0.00473</td>
<td>0.0688</td>
</tr>
<tr>
<td></td>
<td>GLS Grafen’s $\rho = 0.561$</td>
<td>330.5</td>
<td>−650.9</td>
<td>0.00255</td>
<td>0.0505</td>
</tr>
<tr>
<td>PSCR</td>
<td>Star</td>
<td>271.5</td>
<td>−535.0</td>
<td>0.00447</td>
<td>0.0669</td>
</tr>
<tr>
<td></td>
<td>GLS Grafen’s $\rho = 0.468$</td>
<td>328.6</td>
<td>−647.1</td>
<td>0.00260</td>
<td>0.0510</td>
</tr>
<tr>
<td>LSCR</td>
<td>Star</td>
<td>243.6</td>
<td>−479.2</td>
<td>0.00584</td>
<td>0.0764</td>
</tr>
<tr>
<td></td>
<td>GLS Grafen’s $\rho = 0.568$</td>
<td>318.3</td>
<td>−626.7</td>
<td>0.00287</td>
<td>0.0535</td>
</tr>
<tr>
<td>SCR</td>
<td>Star</td>
<td>277.5</td>
<td>−540.0</td>
<td>0.00423</td>
<td>0.0650</td>
</tr>
<tr>
<td></td>
<td>GLS Grafen’s $\rho = 0.595$</td>
<td>355.1</td>
<td>−700.2</td>
<td>0.00202</td>
<td>0.0449</td>
</tr>
</tbody>
</table>

Results are shown for the “star” model, which uses conventional regression analysis with no phylogenetic correction and under branch length transformations used in phylogenetic GLS models. ASCR, anterior semicircular canal radius; LSCR, lateral semicircular canal radius; MSE, mean squared error; PSCR, posterior semicircular canal radius; SCR, average semicircular canal radius; SEE, standard error of the estimate.

**Discussion**

As can be seen in Fig. 1 and as demonstrated by phylogenetically informed statistical analyses, semicircular canal radius of curvature is positively correlated with agility of locomotion in primates and other mammals. Animals with faster or more agile locomotion have large canals relative to their body size, whereas animals with slower, more deliberate locomotion have small canals for their body size. This relationship between canal size and locomotor behavior is consistent across primates and other mammals representing a wide array of body sizes, life histories, and locomotor modes. As such, these findings confirm quantitatively what past studies suggested based on small samples and more incidental observations (9, 13–15, 17, 18).

The strong relationship between semicircular canal size and locomotor agility is clearly evident in a variety of primate groups. The leaping tarsiers and galagos have large canals relative to their body size, whereas the slow quadrupedal lorises, although of similar body size, lie on the lower end of the distribution with relatively small canals. At larger body masses, this relationship also holds. The acrobatic brachiating gibbons have relatively large canals for their body size, compared with the great apes. The sloth lemurs and koala lemurs have small canals for their body size, and *Palaeopropithecus* in particular has very small canals to match its reconstructed extremely slow locomotion.

In some cases, canal size does not seem to match expectations based on the locomotor behavioral classification. This could occur when a small, unrepresentative sample falls toward the margins of a species’ morphological range of variation, especially when combined with a less secure estimate of body mass. It may also be that locomotor behavior was misclassified because certain aspects critical to the perception of angular rather than linear motion were not recognized. A possible example is *Ateles*...
of well dated extinct species throughout our phylogenetic tree. Of the three branch length transformations used, the method by using untransformed divergence times gathered from the star phylogeny (conventional regression) and the GLS constrained models employing some type of branch length transformation outperformed both the conventional and the GLS constrained methods. This may be for a variety of reasons, including the presence of unavoidable measurement error in the estimates of species’ mean BM and canal radii.

The similarity of results between the conventional and the phylogenetic regression models indicates that the semicircular canal system holds a very strong functional signal related to head motion and locomotor agility. Such an apparently robust functional relationship across primates and other mammals suggests that adjusting arc size, and thus endolymph circuit length, constitutes a prime adaptive mechanism of how the canal system is tuned to the kinematic characteristics of different locomotor repertoires. This finding will contribute to a more fundamental understanding of the biomechanics of the canal system. On a more practical level, it confirms the potential utility of the semicircular canals for the reconstruction of behavior from fossil specimens.

Materials and Methods

The present sample has been collected from several sources [see supporting information (SI)]. Ninety-one species of primate are placed in a wider mammalian context of 210 species in total. Cetaceans were not included because they have a highly derived vestibular system compared with all other mammals, and other tetrapods (11, 20, 26). The mammalian sample included, in

Table 3. Coefficients of the regression equations for the best-fit model for each canal: Primates

<table>
<thead>
<tr>
<th>Canal</th>
<th>Variable</th>
<th>Coef</th>
<th>SE</th>
<th>F</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCR</td>
<td>log_{10}BM</td>
<td>0.141</td>
<td>0.013</td>
<td>125.556</td>
<td>1, 88</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>log_{10}AGIL</td>
<td>0.171</td>
<td>0.040</td>
<td>17.894</td>
<td>1, 88</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>y intercept</td>
<td>-0.225</td>
<td>0.062</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PSCR</td>
<td>log_{10}BM</td>
<td>0.134</td>
<td>0.010</td>
<td>193.261</td>
<td>1, 88</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>log_{10}AGIL</td>
<td>0.172</td>
<td>0.033</td>
<td>27.962</td>
<td>1, 88</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>y intercept</td>
<td>-0.249</td>
<td>0.047</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LSCR</td>
<td>log_{10}BM</td>
<td>0.117</td>
<td>0.009</td>
<td>161.061</td>
<td>1, 88</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>log_{10}AGIL</td>
<td>0.236</td>
<td>0.032</td>
<td>53.591</td>
<td>1, 88</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>y intercept</td>
<td>-0.271</td>
<td>0.043</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SCR</td>
<td>log_{10}BM</td>
<td>0.128</td>
<td>0.010</td>
<td>175.138</td>
<td>1, 88</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>log_{10}AGIL</td>
<td>0.177</td>
<td>0.031</td>
<td>31.859</td>
<td>1, 88</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>y intercept</td>
<td>-0.229</td>
<td>0.047</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Coef, coefficient; ASCR, anterior semicircular canal radius; LSCR, lateral semicircular canal radius; PSCR, posterior semicircular canal radius; SCR, average semicircular canal radius; —, not applicable.

Table 4. Coefficients of the regression equations for the best-fit model for each canal: All mammals

<table>
<thead>
<tr>
<th>Canal</th>
<th>Variable</th>
<th>Coef</th>
<th>SE</th>
<th>F</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCR</td>
<td>log_{10}BM</td>
<td>0.145</td>
<td>0.005</td>
<td>810.606</td>
<td>1, 207</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>log_{10}AGIL</td>
<td>0.113</td>
<td>0.026</td>
<td>19.127</td>
<td>1, 207</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>y intercept</td>
<td>-0.280</td>
<td>0.038</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PSCR</td>
<td>log_{10}BM</td>
<td>0.149</td>
<td>0.005</td>
<td>927.291</td>
<td>1, 207</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>log_{10}AGIL</td>
<td>0.119</td>
<td>0.026</td>
<td>21.253</td>
<td>1, 207</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>y intercept</td>
<td>-0.344</td>
<td>0.035</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LSCR</td>
<td>log_{10}BM</td>
<td>0.142</td>
<td>0.005</td>
<td>694.619</td>
<td>1, 207</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>log_{10}AGIL</td>
<td>0.168</td>
<td>0.027</td>
<td>37.317</td>
<td>1, 207</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>y intercept</td>
<td>-0.407</td>
<td>0.041</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SCR</td>
<td>log_{10}BM</td>
<td>0.145</td>
<td>0.005</td>
<td>1005.332</td>
<td>1, 207</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>log_{10}AGIL</td>
<td>0.128</td>
<td>0.023</td>
<td>30.653</td>
<td>1, 207</td>
<td>&lt;0.00001</td>
</tr>
<tr>
<td></td>
<td>y intercept</td>
<td>-0.338</td>
<td>0.035</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Coef, coefficient; ASCR, anterior semicircular canal radius; LSCR, lateral semicircular canal radius; PSCR, posterior semicircular canal radius; SCR, average semicircular canal radius; —, not applicable.
particular, the canals of groups of arboreal and terrestrial eutherian and metatherian mammals with body masses in the primate range. Previously published measurements of some species that were compatible with those taken in the current study were added (12, 16–19, 27–30). Wild-shot specimens were used whenever possible, and the petrosal region of each was scanned by using medical or high-resolution computed tomography (CT) at a sufficiently high resolution for accurately measuring the canals.

We analyzed the extant primate sample together with the subfossil lemur of Madagascar. These latter species have only become extinct very recently and can be regarded as part of the same ecological community as living lemurs (31, 32). Most of the subfossil lemur were much larger than their living relatives and so extend the size range of strepsirrhines to that of larger anthropoids. Locomotor reconstructions for the subfossil Malagasy lemur were based on postcranial skeletal anatomy. The giant koala lemur of the genus Megaladapis are very large footed, slow climbing animals with at least three species (33). The three genera of sloth lemur are increasingly more adapted for suspensory locomotion in the order, Megopropithecidae (34), Babakotia (35), and Palaeopropithecus. The last of these, also the largest at the size of a chimpanzee, is a remarkably close mimic of the living South American sloths, with longer forelimbs, very elongated curved hands and feet, and the necessary wrist and ankle stability for moving effectively on the ground (36, 37). The monkey-like lemurs of the Archaeolemuridae were large brained, stocky quadrupeds with dental adaptations that closely parallel those of Old World monkeys, and locomotor adaptations for ground living, although they were undoubtedly capable of moving arboreally (38).

Most of the smaller extant primate skulls were scanned on the OMNI-X high-resolution x-ray CT scanner at the Center for Quantitative Imaging at Pennsylvania State University with voxel dimensions ranging from \(0.02\) to 0.1 mm. Other specimens were scanned with CT scanners at various locations with voxel dimensions ranging from \(0.07\) to 0.5 mm. The CT images were cropped to the maximum extents of the bony labyrinth. By using VoxBlat 3.1 software (VayTek, Fairfield, IA), image stacks were resliced along the plane of each of the three canals. The height and width of each canal (16) were measured, and the radius of curvature was calculated as \(R = 0.5 \times (\text{height} + \text{width})/2\). The species mean radius of curvature was used for all analyses. Body masses for primates were taken from Smith and Jungers (39) and for other mammals mainly from Silva and Domingo (40). To test the hypothesis that canal radius is positively correlated with agility of locomotion, each taxon was assigned one of six agility categories, from extra slow (scored as 6), based on the field observations of three anthropologists. Locomotor reconstructions for the subfossil Malagasy lemur were based on postcranial skeletal anatomy.

The radius of curvature was used for all analyses. Body masses for primates were taken from Smith and Jungers (39) and for other mammals mainly from Silva and Domingo (40). To test the hypothesis that canal radius is positively correlated with agility of locomotion, each taxon was assigned one of six agility categories, from extra slow (scored as 6), based on the field observations of three anthropologists. Locomotor reconstructions for the subfossil Malagasy lemur were based on postcranial skeletal anatomy.


Conventional least-squares multiple regression analyses were run for \(\log_{10}\) transformed canal radius against \(\log_{10}\)BM and \(\log_{10}\)AGIL. AGIL was treated as a quantitative variable with increasing AGIL expected to correspond to increasing canine size.

For phylogenetic GLS analyses, phylogenies were constructed by using the results of molecular analyses, where possible, and branch lengths were taken from the paleontological literature or from molecular clock analyses (see SI). The phylogenetic tree for primates and all mammals were converted to variance–covariance matrices by using the PDDIST module of Phenotypic Diversity Analysis Programs (PDPAP) in which the diagonals represented the branch length from the root to each tip species and the off-diagonals represented the branch length shared by pairs of tips (43–45). For each channel, multiple regressions were performed by using the phylogenetic GLS model for \(\log_{10}\) canal radius against \(\log_{10}\)BM and \(\log_{10}\)AGIL. GLS regression analyses were run by using the original branch lengths as well as after transforming the branch lengths by using the maximum likelihood estimates for the Ornstein–Uhlenbeck transform (45, 46), Grafen’s \(s\) (47, 48), and Pagel’s \(\lambda\) (49, 50), to determine the optimal regression model. Models were compared by using the natural logarithm (In) ML likelihood and the AIC. The presence of phylogenetic signal in these data were tested by comparing the likelihoods for phylogenetic and nonphylogenetic regression analyses by using the AIC (51). A significantly lower AIC indicated a phylogenetic signal in the data. The three branch length transformations generally performed equally well and all gave significantly higher ML estimates than either the star phylogeny or the true divergence time branches.

We thank A. Grader, P. Halleck, and O. Karacan (Center for Quantitative Imaging, Pennsylvania State University) for scanning facilities and advice; J. Fleagle and S. McGraw for assistance with locomotor behavioral classifications; and J. Cheverud, A. Ives, N. Jeffrey, R. Smith, and N. Vasey for advice. We thank the following for providing us access to specimens for scanning or access to CT scans: L. Aiello, C. Beard, P. Chattrah, H. Chatterjee, M. Dawson, J. Dines, K. Doyle, P. Gingerich, L. Godfrey, L. Gordon, G. Gunnell, G. Hock, T. Holmes, W. Jungers, H. Kafika, D. Lieberman, R. Martin, P. Morris, S. McLaren, J. Mead, T. Rasmussen, J. Rossie, D. Rothrock, E. Seiffert, E. Simons, J. Thewissen, J. Wible, and G. Weber. The following institutions lent specimens: The Carnegie Museum of Natural History (Pittsburgh, PA); Duke University Division of Fossil Primates (Durham, NC); Field Museum of Natural History (Chicago, IL); Grant Museum of Zoology and Napier Collection, University College London (London, U.K.); National Museum of Natural History, Smithsonian Institution (Washington, DC); Natural History Museum of Los Angeles County (Los Angeles, CA); Pratt Museum, Amherst College (Amherst, MA); Royal College of Surgeons, London (London, U.K.); University of Kansas Natural History Museum (Lawrence, KS); University of Michigan Museum of Paleontology (Ann Arbor, MI); and Natural History Museum of Vienna (Vienna, Austria). This research was supported by National Science Foundation Grant BCS-0009320 (to A.W. and F.S.).
The primate semicircular canal system and locomotion

Spoor et al. 10.1073/pnas.0704250104.

Supporting Information
Files in this Data Supplement:
SI Data Set = an Excel file that can be downloaded (04250Dataset.xls)
SI Text

Phylogeny for All Mammals in Newick Format.
Explanation of Mammal Phylogeny. The mammal phylogeny used in this study was constructed based primarily on molecular studies of relationships and divergence times. Priority in generating the phylogeny was placed on molecular studies. Morphological studies and the fossil record (1) were used to supplement the molecular phylogeny where necessary. The general relationships among major mammal groups were taken from Springer et al. (2, 3).
General relationships among primates and initial trees were taken from a variety of sources (4-9). A divergence date of 86 mya for Primates and (Scandentia-Dermoptera) was taken from Springer et al. (2). An estimate of 77 mya for the Strepsirrhine-Haplorhine split was used based on Springer et al. (2). The base of Strepsirrhines was placed at 69 mya from Yoder and Yang (10), the base of Lorisiformes at 55 from Yoder (8), and the base of Lemuriformes at 62.7 mya from Yoder and Yang (10). Internal branching patterns and divergence dates for Strepsirrhines based on several molecular studies (8, 10-12). The split between African and Asian lorises was set at 42 mya and the splits between the respective loris genera were set at 36 mya (12). The divergence between Galagoides and the Galago-Otolemur clade was set to 30 mya with the splits between G. elegantulus and the other bushbabies arbitrarily set to 15 mya. Daubentonia is set as the initial branch from the other Lemuriformes at 62.7 mya. The split between cheirogaleids and the rest of the Malagasy taxa is set at ≈43 mya (10, 12). Internal branching dates within cheirogaleids after Yoder and Yang (10). Phylogenetic positions of the subfossil lemurs taken from Karanth et al. (11). Branch lengths for the subfossils are slightly shorter than contemporary to reflect their status as recently extinct. Estimates of last occurrence are from Burney et al. (13).

The base of the Haplorhines was set at 55 mya following Ross et al. (6) based on the presence of Tarsius eocaenus at 45 mya (14). The platyrrhine-catarrhine split is placed at 43.6 mya based on the molecular data from Eizirik et al. (15). The platyrrhine relationships and branching dates largely follows the phylogeny and explanation used by Ross et al. (6) and based on molecular data (5, 16) and fossil evidence. The base of the platyrrhine radiation is set at 25 mya based on the initial appearance of platyrrhines in the fossil record during the early Miocene. The presence in the Miocene of fossils purported to belong to modern clades suggests a rapid radiation of known clades after 25 mya.

The divergence dates and branching patterns within catarrhines were based on both molecular and fossil evidence (5, 10, 17-21). The cercopithecoid-hominoid split was placed at 34.7 based on Yoder and Yang (10), which is similar to other estimates (15). The phylogeny of hylobatids was based Roos and Geissmann (22), and the divergence dates were arbitrary following the 15 mya split with hominids. The divergence dates within hominids were based on Stauffer et al. (19). Relationships and dates within cercopithecoids were based on both molecular and morphological sources (17, 18, 20, 21).

Detailed phylogenies and divergence dates were estimated for all other mammal groups in the study including Marsupialia (23-28), Xenarthra (29, 30), Cetartiodactyla (31), Carnivora (32, 33), Rodentia (34-42), Eulipotyphla (35, 43, 44), Chiroptera (45-48), and Scandentia (49, 50).


