Comparaciones interespecíficas
y métodos estadísticos filogenéticos

ENRICO L. REZENDE & THEODORE GARLAND, JR

Resumen. Actualmente se sabe que los organismos se relacionan entre sí de forma jerárquica, lo que trae como principal consecuencia que especies cercanas van a tender a paralelo bajo prácticamente cualquier modelo evolutivo. Este fenómeno puede afectar de forma dramática las inferencias derivadas de estudios comparativos entre especies, dado que una relación jerárquica entre ellas viola un supuesto básico de la estadística convencional. Para analizar correctamente datos comparativos entre múltiples especies, así como inferir patrones evolutivos a partir de ellos, es necesario considerar de forma explícita la historia evolutiva de las especies en cuestión. En la actualidad se han desarrollado varios métodos estadísticos que toman en cuenta la información filogenética, permitiendo analizar correctamente datos interespecíficos y descartar los efectos de la historia evolutiva al inferir patrones adaptativos. En este capítulo discutimos brevemente los aspectos teóricos que determinaron el desarrollo de esos nuevos métodos, uno de los algoritmos actualmente usados para tratar la no-independencia de datos interespecíficos, y las posibles aplicaciones de estos métodos en la fisiología, ecológica y evolutiva.

Palabras clave: evolución fenotípica de caracteres, filogénesis, método comparativo, señal filogenética, contrastes independientes.

1 Department of Biology, University of California, Riverside, CA, USA. Email: erezende@citrus.uct.edu; tgarland@citrus.uct.edu.
INTRODUCCIÓN

Los estudios comparativos interespecíficos tienen una larga y productiva historia en fisiología (Garland & Adolph 1994; Garland & Carter 1994, Feder et al. 2000). A partir de 1985, los aspectos conceptuales y estadísticos del “método comparativo” (sensu Harvey & Pagel 1991) avanzaron muchísimo. Esto fue debido a la aceptación y extensión de seis ideas fundamentales (Blomberg & Garland 2002): 1) la adaptación por selección natural no debe ser inferida causalmente basándose en estudios comparativos; 2) el conocimiento de la filogenia aumenta no solo la calidad, sino también los tipos de inferencias que pueden hacerse a partir de datos comparativos (e.g. estimación de caracteres en ancestros hipotéticos); 3) estadísticamente los datos interespecíficos no pueden ser considerados como muestras independientes y distribuidos en forma homogénea en una “población”; 4) los supuestos sobre cómo evolucionan los caracteres en el tiempo (como un proceso aleatorio de movimiento Browniano, por ejemplo) son necesarios para cualquier inferencia estadística; 5) la selección de especies para un estudio comparativo debe tomar en cuenta las relaciones filogenéticas entre esas especies, y 6) la mayoría de los estudios comparativos se basan únicamente en correlaciones, por lo que la capacidad de inferir causalidad de ellos puede ser aumentada significativamente con información adicional procedente de, por ejemplo, experimentos de selección actuando en poblaciones contemporáneas o de estudios mecanísticos de cómo funcionan los organismos.

Varios de esos puntos pueden ser ilustrados con el siguiente ejemplo. Un fisiólogo desea estudiar las adaptaciones de los mamíferos a la altitud. Él o ella podría comparar algún rasgo fisiológico, en particular entre especies nativas de alta y baja altitud. ¿Pero cuántas especies serían necesarias? Obviamente, por lo menos dos. Sin embargo, se da cuenta de que dos especies no serían suficientes, porque es muy probable que dos especies difieran en varios rasgos simplemente porque son dos especies distintas (Garland & Adolph 1994). Por lo tanto, no se puede inferir que un rasgo en particular es adaptativo solo con respecto a la altitud porque difiere entre las dos especies estudiadas.

Entonces, el fisiólogo decide comparar varias especies de alta altitud con varias otras provenientes de baja altitud. Recuerda que cerca de su universidad hay tres especies de roedores que viven por encima de los 2.000 m y otras tres especies nativas de bajas altitudes. Después, preparándose para salir a terreno a poner sus trampas, examina una guía de roedores para saber en qué tipo de hábitat se encuentra cada especie. Se da cuenta de que las tres especies de alta altitud pertenecen a un solo género, mientras que las otras tres pertenecen a otro. La guía además cita varios rasgos, casi todos morfológicos, que caracterizan cada género. Se pregunta, entonces, si lo mismo podría pasar en rasgos fisiológicos -quizás en el mismo rasgo que él pensaba estudiar (e.g. concentración de hemoglobina en la sangre, [Hb]). Si es que encuentra una diferencia, entonces podría...
ser interpretada como una característica inherente de cada género, y no necesariamente como una adaptación per se. Decide, entonces evitar esa “pseudorreplicación filogenética” (Garland 2001) estudiando especies de tres géneros distintos, cada uno conteniendo una especie de alta y una especie de baja altitud. Con eso, tendría tres comparaciones pareadas.

¿Sería suficiente? ¿Qué prueba estadística emplearía para analizar los datos? Suponiendo que las diferencias en las tres comparaciones son consistentes, ¿obtendría el deseo P < 0,05? Quizás necesitaría de más especies. El fisiólogo entonces consulta a un bioestadístico y le explica que, en términos generales, quiere determinar si un rasgo en particular está asociado con la altitud. Es decir eventualmente mostraría un gráfico de, por ejemplo, altitud vs. [Hb], en que cada punto representa el promedio de cada especie y la altitud donde cada fue capturada. Las relaciones se analizarían con una regresión lineal o con una simple correlación. Dado su conocimiento en el tema, el fisiólogo puede predecir a priori el signo de esa relación (e.g. una correlación positiva entre [Hb] y altitud), lo que le permite hacer una prueba estadística de una cola. El bioestadístico entonces le señala que la capacidad para detectar una relación significativa depende del tipo de prueba que se utilice (e.g. paramétrica vs. no-paramétrica), la magnitud de la relación, y el número de especies incluidas (i.e., los grados de libertad de la prueba). Al consultar un libro de estadística percibe que si la correlación de Pearson en realidad fuese de r = 0,75, necesitaría 8 o 9 especies para obtener un 80% de probabilidad de detectar un resultado significativo con un P < 0,05 (véase también Fig. 5 en Garland & Adolph 1994).

El fisiólogo decide entonces medir 8 ó 9 especies. Hecho eso, representa en un gráfico [Hb] vs. altitud, calcula el coeficiente de Pearson para la correlación, comprueba en una tabla estadística los valores críticos para determinar la probabilidad de obtener dicha correlación debido solamente al azar, y vuelve a consultar al bioestadístico. El experto examina el gráfico y nota que algunas especies son parte del mismo género. Le recuerda al fisiólogo que los métodos estadísticos convencionales asumen que los datos son independientes y obtenidos al azar dentro de la población estudiada. “¿Cuál es tu población?”, pregunta finalmente el bioestadístico. “Supongo que todos los roedores”, le contesta el fisiólogo. “¿Pero serán esos datos de [Hb] realmente independientes?”, sigue el bioestadístico, “¿No es verdad que se agrupa a distintas especies en un género dado que tienen muchas características en común?”. El fisiólogo reconoce que el bioestadístico tiene razón, concluye finalmente el estadístico, “entonces deberías emplear un método que tenga en cuenta el hecho que los datos no son independientes”.

De eso se trata este capítulo, de presentarle al estudiante de fisiología ecológica y evolutiva, una breve introducción a los métodos estadísticos que permiten analizar en forma correcta datos comparativos. Aquí tratamos de: 1) los principales problemas estadísticos asociados a la naturaleza jerárquica de cómo se relacionan las especies; 2) aspectos teóricos en que se basan los nuevos métodos.
estadísticos filogenéticos; 3) cómo funciona el método de contrastes filogenéticamente independientes (el método mejor estudiado y más utilizado en la actualidad); 4) las preguntas que dichos métodos pueden ayudar a contestar y algunos ejemplos. Muchas de esas preguntas, hay que enfatizar, pueden ser abordadas solo al tomar en cuenta las relaciones filogenéticas entre las especies. Es decir, pueden ser estudiadas nuevas áreas al emplearse información filogenética. Como este se trata de un capítulo introductorio, toda la información presentada aquí se discute con mayor detalle en referencias adicionales (e. g., Harvey & Pagel 1991; Garland et al. 1992; Garland & Adolph 1994; Garland et al. 1999; Pagel 1999; Garland & Ives 2000; Garland 2001; Rohlf 2001; Blomberg & Garland 2002; Blomberg et al. 2003).

El método comparativo moderno

Desde los tiempos de Darwin el método comparativo ha sido una de las técnicas más utilizadas para investigar cambios evolutivos a largo plazo. Aunque este método por lo general se utiliza para inferir adaptaciones a nivel genético/evolutivo, el método comparativo también puede ser empleado para inferir relaciones funcionales entre rasgos (e.g., fisiología comparativa y biomecánica) y elucidar la naturaleza de distintas relaciones alométricas. Sin embargo, el método comparativo ha cambiado drásticamente durante las últimas dos décadas. Ese cambio se debe principalmente al desarrollo de métodos analíticos que incorporan información filogenética y el uso explícito de modelos de evolución de caracteres en el tiempo, que posibilitan inferencias estadísticas nuevas y mejores.

Tradicionalmente, los estudios interespecíficos comparan distintas especies y definen patrones si es que se detectan relaciones significativas entre rasgos, o entre un rasgo en particular y alguna variable ambiental. Como los organismos se relacionan de forma jerárquica, sin embargo, los datos obtenidos de especies distintas no deben ser considerados como independientes, lo que viola uno de los supuestos básicos de los métodos estadísticos convencionales (Fig. 1). Las consecuencias de dicha no-independencia incluyen un aumento del error de Tipo I al poner a prueba una hipótesis, menor potencia para detectar relaciones significativas, y estimadores erróneos (e.g. pendiente de una relación alométrica).

¿Por qué los datos de múltiples especies no son independientes? Harvey & Pagel (1991: 38-48) sugieren tres factores. El primer factor, sin duda el más intuitivo, se debe al tiempo de divergencia entre dos clados. Una vez ocurrida la especiación (cladogénesis), se requiere de tiempo para que los rasgos de dos especies diverjan como resultado de procesos aleatorios, como mutaciones y deriva genética, o como respuesta a distintas presiones selectivas pertinentes a cada especie. Así, especies más emparentadas filogenéticamente, tienden en general a parecerse más entre sí respecto a especies no tan emparentadas.
El segundo factor, denominado “conservación de nicho filogenético”, postula que los fenotipos ancestrales y derivados en un linaje probablemente habitaron ambientes similares. O sea, cuando un nuevo nicho ecológico se hace disponible, aquellas especies que ocupan un nicho similar son las mejores candidatas para invadir el nuevo nicho. Como consecuencia, especies cercanas serían fenotípicamente similares dado que ocupan nichos equivalentes por razones históricas, por lo que estarían sujetas a presiones selectivas semejantes.

La tercera razón sugerida por Harvey & Pagel (1991) postula que las respuestas a un determinado factor selectivo es fenotipo-dependiente. En otras palabras, los tipos de respuestas adaptativas que pueden ocurrir frente a un factor selec-
tivo van a depender del “punto de partida” de la población ancestral. Puntos de partida distintos pueden acarrear respuestas distintas como, por ejemplo, insectos con defensas químicas podrían hacerse más conspicuos y llamativos dado un riesgo de depredación mayor, mientras que especies sin dichas defensas se harían más críticas. En este ejemplo, el factor selectivo es el mismo, aunque las estrategias adaptativas de cada linaje frente a ese factor serían literalmente opuestas.

Evidencia experimental de la generalidad de las señales filogenéticas

Además de las ideas básicas citadas en los párrafos anteriores, nuestra experiencia muestra claramente que organismos filogenéticamente cercanos tienden a parecerse entre sí (e.g. un picaflor se asemeja a otros picaflores), aunque pueden ocurrir excepciones. Por ejemplo, los marsupiales australianos presentan diversos caracteres convergentes con los mamíferos placentados de otros continentes. Del mismo modo, varios linajes de roedores desarrollaron de forma independiente estrategias similares para habitar ambientes áridos a nivel morfológico y fisiológico. Además, procesos como el desplazamiento de caracteres podrían hacer que especies cercanas se diferencien. Por lo tanto, es necesario determinar que tan general es el fenómeno de que especies emparentadas se asemejen dada su relación filogenética.

Los estudios más recientes en el tema usan el término “señal filogenética” para referirse al hecho que especies cercanas filogenéticamente tienden a parecerse entre sí (Blomberg & Garland 2002; Blomberg et al. 2003). Estos estudios muestran que, en general, para cualquier árbol filogenético, especies cercanas tienden a parecerse asumiendo modelos evolutivos simples como el de movimiento Browniano. Dicho modelo considera cambios aleatorios en un continuo temporal, lo que puede ser adecuado para describir cambios evolutivos fenotípicos que ocurren simplemente por deriva gênica (que va a ocurrir en cualquier población finita) y/o en respuesta a factores selectivos que cambian gradualmente y estocásticamente en el tiempo. Por lo tanto, este modelo es inicialmente factible para predecir la señal filogenética que se esperaría observar en un árbol filogenético en particular (véase Blomberg et al. 2003). Dado que uno espera señal filogenética bajo el modelo evolutivo más simple, la existencia de señal en un determinado carácter no requiere de explicaciones adicionales, tales como, por ejemplo, limitaciones a nivel evolutivo, inercia filogenética, o incluso selección natural (en realidad, la adaptación por selección natural puede con frecuencia disminuir la señal [e.g., véase Fig. 1 en Blomberg & Garland 2002]).

Blomberg et al. (2003) desarrollaron nuevos métodos que permiten poner a prueba si es que un determinado conjunto de datos presenta señal filogenética
en términos estadísticos, y además cuantificar y comparar la cantidad de señal en distintos caracteres y díbulos (véase abajo). Empleando estos métodos para datos comparativos en la literatura, estos autores muestran que la presencia de señal filogenética es un fenómeno bastante general, incluso para caracteres supuestamente plásticos (i.e. altamente adaptativos) y/o sujetos a efectos ambientales no genéticos tal como rangos de distribución o tamaño de grupo. Basándose en procedimientos de aleatorización diseñados ad hoc, los autores detectaron señales filogenéticas estadísticamente significativas (P < 0,05) en más del 90% de las bases de datos con 20 o más especies. Además, en ningún caso las especies difirieron entre sí más que lo esperado si las especies estuviesen distribuidas aleatoriamente en el árbol (lo que los autores denominaron “anti-señal”). En conclusión, esos resultados justifican el empleo de métodos estadísticos filogenéticos en la gran mayoría de los estudios comparativos.

Una breve introducción a los contrastes independientes

En la actualidad, los métodos principales que están disponibles para incorporar la información filogenética completa son tres (topología y longitudes de las ramas [tiempos de divergencia]) en análisis comparativos: contrastes filogenéticamente independientes (Felsenstein 1985; Garland et al. 1992), modelos de mínimos cuadrados generalizados (MCG; Garland & Ives 2000; Rohlf 2001; y citas), y generadores de simulaciones de Monte Carlo para obtener funciones de densidad filogenéticamente correctas (Martins & Garland 1991; Garland et al. 1993). A pesar de que estos métodos usan distintos algoritmos, en la mayoría de los casos ellos son equivalentes. Aquí ilustramos principalmente el primer método, el de contrastes independientes, por ser el más difundido y empleado en la actualidad. Como otros métodos, éste puede ser utilizado para diversos procedimientos estadísticos tales como correlaciones y regresiones, análisis de componentes principales, y análisis de varianza y covarianza. Además, como se discute más adelante, puede ser empleado para responder preguntas imposibles de abordar usando métodos estadísticos convencionales.

Estos tres métodos se basan en los supuestos básicos que la topología de las relaciones filogenéticas empleada en el análisis es correcta y que la longitud de las ramas en el árbol es conocida y expresado en unidades proporcionales a la varianza esperada en la evolución del carácter. Los contrastes independientes y los modelos MCG asumen, además, que los caracteres han evolucionado por procesos aleatorios tal como el movimiento Browniano, o por cualquier proceso que podría ser “generado” al manipular la longitud de las ramas (e.g., véase Blomberg et al. 2003). En ese contexto, las simulaciones de Monte Carlo presentan mayor flexibilidad que los otros dos métodos, ya que puede ser empleado virtual-
mente cualquier modelo de evolución de caracteres para simular nuevos datos, los que pueden ser analizados de la misma forma que los datos originales. Eso permite la creación de distribuciones nulas filogenéticamente correctas y arbitrariamente complejas en términos del modelo evolutivo empleado, que puede ser ajustado teniendo en cuenta otras fuentes de información, tal como el registro fósil (Garland et al. 1993). De la misma manera, simulaciones de filogenias (parcialmente) aleatorias pueden ser empleadas cuando la topología de un árbol filogenético no es completamente conocida (e. g., see Housworth & Martins 2001).

Volviendo a los contrastes independientes, (modelos MCG y sus supuestos), es fundamental minimizar errores en la topología del árbol filogenético, simplemente porque se estarían comparando especies equivocadas. El conocimiento del modelo evolutivo y del tiempo de divergencia entre clados son supuestos relacionados, en el sentido de que es posible cambiar el modelo evolutivo empleado simplemente manipulando la longitud de las ramas del árbol filogenético. Las simulaciones demuestran que errores en la longitud de las ramas y/o en el modelo evolutivo empleado pueden generar serios problemas estadísticos, pero también sugieren que pruebas diagnósticas (Garland et al. 1992) y procedimientos para corregir dichos errores son efectivos para "recuperar" el análisis (Díaz-Uriarte & Garland 1998; Garland & Díaz-Uriarte 1999). Esto no es necesariamente aplicable para todos los modelos evolutivos posibles, pero aun para aquellos que difieren radicalmente del modelo de evolución Browniano y sus variantes, las pruebas diagnósticas estándares son efectivas para detectar problemas en ese sentido (e. g., véase Harvey & Rambaut 2000).

La Fig. 2 muestra cómo se calculan los contrastes independientes. El objetivo de ese algoritmo es emplear información filogenética para transformar N datos originalmente no-independientes en N-1 contrastes independientes, distribuidos de la misma forma. Esos valores pueden ser empleados en programas estadísticos convencionales, aunque todos los análisis (e.g. regresión, correlación) deben ser calculados pasando por el origen. La estimación de los contrastes se hace de la siguiente forma. Primero se identifican pares de taxas hermanas en el extremo de las ramas (típicamente especies, aunque podrían ser poblaciones, promedios para distintos géneros, etc). Esos serían las especies A, B y C, D en la Fig. 2. Para esos dos contrastes, primero se calcula la diferencia entre fenotipos en cada pareja. Esas diferencias (contrastos brutos) se dividen entonces por sus desviaciones estándar (DE), que se calculan como la raíz cuadrada de la suma de la longitud de las dos ramas. De esta forma, se obtienen contrastes standarizados por el tiempo total de divergencia.

Si se estima primero el fenotipo de los ancestros hipotéticos, los contrastes también pueden ser calculados para nodos intermedios. Para el nodo 4, una aproximación razonable sería el promedio de las dos especies derivadas A
y B, o sea, 2.5. Del mismo modo se obtiene un valor de 7 en el nodo 3. El contrasta bruto entre los nodos 4 y 3 es, por lo tanto, de -4.5. Ese valor debería ser nuevamente dividido por su respectiva DE para obtenerse un contrasta estandarizado. Sin embargo, una nota de precaución. El contrasta de esos nodos proviene de dos fenotipos estimados, no de datos fenotípicos reales y obtenidos experimentalmente. Por lo tanto, ese contrasta no debe ser considerado tan “preciso” como el que se obtuvo con datos reales, por lo que su significancia debe ser devaluada con respecto a los contrastes calculados a partir de los extremos del árbol. Bajo un modelo de evolución Browniano, eso se puede hacer incrementando el tiempo de divergencia entre esos dos nodos. Como lo demostró Felsenstein (1985), la magnitud del incremento se calcula como (rama derivada 1 x rama derivada 2)/(rama derivada 1 + rama derivada 2). Por lo tanto, la rama que conduce al nodo 4 debe ser aumentada en 1 unidad, obteniéndose un valor corregido de 4 unidades. Para la rama que conduce al nodo 3, la corrección es de 2 unidades, generando una longitud corregi-
da igual a 3 (véase Fig. 2). Esos tiempos de divergencia corregidos son entonces empleados para calcular el contraste estandarizado entre los nodos 4 y 3.

Para estimar el contraste entre el nodo 2 y E, debe ser estimado el valor fenotípico para el nodo 2. Para eso se calcula un promedio ponderado, donde el factor de ponderación es inversamente proporcional al largo de las ramas conduciendo a los nodos 3 y 4. Por lo tanto, el valor en ese nodo será más cercano al estimado para el nodo 3 porque el largo corregido de esa rama (3 unidades) es menor que la que conduce al nodo 4 (4 unidades). La rama que conduce al nodo 2 también debe ser corregida, con cálculos (tal como se describió para los nodos 3 y 4) basados en las ramas (previamente corregidas) que descienden de 2.

Estos cálculos son generalmente complicados y tediosos, pero en la actualidad hay programas de computación disponibles diseñados ad hoc (e.g. el módulo PDETREE puede obtenerse de T.Garland). Hay que enfatizar que algunos de esos programas no corrigan apropiadamente las ramas en los nodos internos a presentan errores. Una manera sencilla de comprobar si el programa calcula los parámetros correctamente es la siguiente. Primero, se hacen cero todas las ramas en los nodos internos en el árbol. Después, se fija un mismo largo para todas las ramas terminales, generando una filogenia tipo "estrella" (Fig. 1A). De ahí se calcula algún estimador con los contrastes independientes, como el coeficiente de Pearson (pasando por el origen) entre dos rasgos. Ese valor debe ser idéntico al valor obtenido con los datos empleando un método estadístico convencional (sin pasar por el origen). Si el resultado no es idéntico, algo anda mal.

La mayoría de los programas diseñados para calcular contrastes independientes generan un archivo con los contrastes calculados, pero no permiten análisis complicados tal como regresiones múltiples o análisis de componentes principales. Para eso, es necesario ingresar la nueva base de datos en cualquier programa estadístico regular, que en su mayoría permite al usuario especificar que las regresiones, correlaciones, deben pasar por el origen.

Cuando usar filogenias en estudios comparativos

Dado la generalidad de la señal filogenética (véase arriba), la información sobre la historia evolutiva y los métodos analíticos correspondientes deben ser empleados siempre que sea posible, y sean, siempre y cuando haya información filogenética disponible. Tradicionalmente, la inclusión de una especie en un estudio comparativo se debe a múltiples razones, tales como el acceso a información existente en la literatura y/o a las mismas especies en el terreno, y la presencia de propiedades biológicas particularmente interesantes (e.g., vivir en
un hábitat extremo; Garland & Adolph 1994; Garland & Carter 1994). Una vez colectados los datos, el investigador tiene que encontrar un árbol filogenético para su grupo particular de especies. Eso normalmente significa juntar información de una variedad de fuentes distintas, incluyendo taxonomía y estudios estrictamente filogenéticos (e.g., basados en secuenciación de DNA). Se han desarrollado varias técnicas para construir árboles a partir de distintas fuentes de información (e.g., Sanderson et al. 1998). Además, con la reciente emergencia de nueva y más accesible tecnología de secuenciación de DNA, muchos biólogos comparativos han empezado a generar información filogenética por su cuenta o en colaboración con biólogos sistemáticos.

Sea cual sea la fuente de información, es muy probable que esté incompleta para los propósitos del estudio, por ejemplo, dada la presencia de una o más politomías, i.e., múltiples ramificaciones de un solo nodo por falta de resolución de lo que sería probablemente una serie de biturcaciones. En el caso extremo en que la “filogenia” se basa puramente en información taxonómica (Fig. 1B), entonces tendría varias politomías, lo que complica los análisis estadísticos empleando contrastes independientes. Una manera simple y efectiva de resolver dicho problema es ajustar los grados de libertad que se emplean para la inferencia estadística (Purvis & Garland 1993; Garland & Díaz-Uriarte 1999). Métodos más sofisticados se basan en simulaciones de múltiples árboles (parcialmente) aleatorios (Houseworth & Martins 2001). Por lo tanto, al fin y al cabo existen métodos que le permitirían al biólogo comparativo usar prácticamente cualquier fuente de información filogenética, aun cuando esté incompleta. Concluyendo, para una gran mayoría de los organismos, los métodos estadísticos filogenéticos ya pueden ser empleados en la actualidad.

Tipos de caracteres que pueden ser analizados filogenéticamente

Cualquier carácter cuantitativo, sea continuo o discreto, puede ser estudiado con métodos comparativos filogenéticos. Rasgos fenotípicos, culturales, ecológicos, y muchos otros pueden ser estudiados con ese enfoque, siempre y cuando esos rasgos pasen de una especie (o población) ancestral a una deriva- da. Por ejemplo, muchas características ambientales, como latitud o precipitación media anual, no son heredables en el sentido convencional (genético). Sin embargo, son heredables en términos de que los organismos nacen en ambien- tes y condiciones semejantes a las que sus padres experimentaron. Por lo tanto, el ancestro de dos especies actuales de climas desérticos probablemente vivió en un ambiente similar, mientras que el ancestro de una especie de alta y una de baja latitud podría haber vivido en una latitud intermedia.
Escogiendo las especies para un estudio comparativo

Como fue mencionado previamente, estudios comparativos proveen evidencia de evolución adaptativa a través de evolución correlacionada entre rasgos (e. g., rasgos fisiológicos que se coadaplan para una determinada conducta) o entre rasgos y variables ambientales (e. g., mecanismos de conservación de agua en especies de ambientes áridos). Para asegurarse de que todas las diferencias en la fisiología realmente reflejen diferencias a nivel genético (i.e., evolutivo), todas las especies deben ser mantenidas en condiciones similares. Para la mayoría de los organismos, entretanto, eso sería complicado y en muchas ocasiones imposible. Por ejemplo, a pesar de que se pueden capturar individuos adultos (o juveniles) y mantenerlos en condiciones estándares por un cierto tiempo antes del experimento, puede que sea imposible reproducirlos en cautiverio y hacer las mediciones en las crías. Por lo tanto, los efectos maternos no pueden ser descartados. Lógicamente, si se va a comparar una gran diversidad de especies (e. g., de picafloros a avestruces), se hace imposible mantenerlas en condiciones similares (e. g., las avestruces no pueden sobrevivir a base de néctar). Cuando la diversidad es menor quizás sea posible, y la logística para reproducir y mantener organismos en condiciones similares en el laboratorio debe ser un importante criterio al seleccionar especies para un estudio.

Seleccionar las especies adecuadas para un estudio requiere de otras consideraciones. Primero se debe identificar una variable ambiental de interés, tal como temperatura o concentración de oxígeno. Generalmente, para incrementar la potencia estadística, las especies a ser comparadas deben abarcar un rango amplio de esa variable independiente. Por ejemplo, uno podría estudiar adaptaciones a la hipoxia en especies (o poblaciones) de mamíferos que viven en un gradiente altitudinal desde el nivel del mar hasta extremas altitudes. Podría incluir a todos los mamíferos terrestres esa comparación, o a especies de un linaje particular, como roedores o primates. Dado un cierto tamaño muestral (número de especies), seleccionar especies en un linaje puede evitar complicaciones inherentes a comparaciones entre especies poco emparentadas. Especies lejanamente emparentadas probablemente difieren en muchos rasgos aparte de aquellos relacionados con la variable de interés (e. g. altitud), por lo que comparar especies lejanas es análogo a realizar un experimento sin controlar muchas de las variables asociadas (véanse también Garland & Adolph 1994; Garland 2001).

Uno de los mejores diseños experimentales para un estudio comparativo es escoger varias especies que: 1) presenten variación en la variable de interés (e. g. altitud, temperatura), y 2) se encuentren en ramas en el árbol que no se superpongan (e. g., véase Fig. 3 en Garland 2001). Este diseño, cuando se analiza con métodos filogenéticos, tiene una mayor potencia para detectar una relación que la estadística convencional. Por otro lado, un diseño experimental con poca capacidad de resolución es aquel en el que todas las especies en un extremo del gradiente
de la variable independiente forman un clado y todas las especies en el otro extremo pertenezcan a otro clado (e. g., véase Garland et al. 1993). Ese último diseño puede ser mejorado estudiándose múltiples rasgos para los cuales predicciones direcciones pueden ser formuladas a priori (e. g. Schondube et al. 2001).

Métodos filogenéticos y sus aplicaciones

Por su carácter explicitamente evolutivo, los métodos estadísticos filogenéticos aportan mayor rigor a las pruebas de hipótesis en áreas tradicionales de la biología. En muchos casos, los resultados obtenidos con los métodos filogenéticos difieren de los obtenidos con pruebas estadísticas convencionales. Por ejemplo, varios estudios muestran que las pendientes en relaciones alométricas cambian al emplearse métodos estadísticos filogenéticos (e. g., Garland & Ives 2000; Symonds & Elgar 2002), así como el hecho de que dicha pendiente sea distinta a no de un cierto valor teórico de interés definido a priori (e. g., 0.67 o 0.75 para alometrías de la tasa metabólica). Otros estudios muestran que los análisis de varianza y covarianza comparando rasgos tróficos de distintos linajes (clados) o grupos asignados basándose en la ecología de cada especie, se ven afectados por la incorporación de información filogenética en los análisis (e. g., Cruz Neto et al. 2001). En este mismo sentido, análisis de correlación entre fenotipos de los organismos y la conducta, ecología y variables ambientales también pueden diferir entre métodos estadísticos convencionales y filogenéticos (e. g., Hosken et al. 2001).

Además, se pueden emplear estudios filogenéticos comparativos para abordar problemas imposibles de ser estudiados sin información filogenética, tal como la estimación de fenotipos ancestrales y la comparación entre tasas de evolución de distintos linajes (clados). A continuación explicamos con más detalle algunas de estas posibles aplicaciones.

Cuantificando la señal filogenética

Como ya fue mencionado, los estudios empíricos han mostrado que la señal filogenética es la norma en bases de datos de estudios comparativos (Freckleton et al. 2002; Blomberg et al. 2003). Blomberg et al. (2003) desarrollaron un coeficiente descriptivo, K, que permite comparar la cantidad de señal para variados árboles y rasgos. Un valor de K igual a 1 indica que el rasgo presenta exactamente la cantidad de señal predicha para una filogenia dada, asumiendo un modelo de evolución Browniano, mientras que valores menores que 1 significan menos señal que la esperada. Dicho estudio muestra que la mayoría de los rasgos presenta
menos señal que lo predicho, lo que puede ser atribuido a adaptaciones y/o errores a grandes rasgos (incluyendo errores en los fenotipos estimados, en la topología y en los tiempos de divergencia). El análisis de la varianza para log K en los 121 rasgos (de un total de 35 árboles) muestran que, en promedio, los rasgos conductuales presentan significativamente menos señal que el tamaño corporal, los rasgos morfológicos, fisiológicos y de historia de vida (Blomberg et al. 2003). Ese resultado es consistente con la idea generalmente aceptada de que los rasgos conductuales son relativamente plásticos en términos evolutivos. Además, los rasgos fisiológicos (corregidos por el tamaño corporal) tienen menos señal que el tamaño corporal per se. Un problema de interés para futuras investigaciones es determinar el coeficiente K en una mayor diversidad de rasgos y organismos, y separar los efectos de errores en las mediciones de diferencias reales en la flexibilidad evolutiva de los rasgos. Por ejemplo, una explicación simple de por qué los rasgos fisiológicos presentan menos señal que el tamaño corporal es que las estimaciones de rasgos fisiológicos son, por lo general, menos precisas. Una alternativa interesante es que los rasgos fisiológicos independientes del tamaño corporal estén sujetos a una mayor presión selectiva (o quizás los rasgos fisiológicos responden más rápidamente a la selección porque tienden a ser más heredables, aunque eso es bastante improbable).

Inferencias sobre procesos evolutivos

Estrechamente relacionado con la medición de la magnitud de la señal filogenética está el problema de cuantificar y comparar tasas de evolución. Por ejemplo, se les atribuye inercia y/o limitaciones filogenéticas a los rasgos que al parecer evolucionaron lentamente. Modelos más complejos que el modelo de movimiento Browniano pueden generar situaciones en que la señal filogenética es baja, o incluso inexistente. Estos modelos podrían incluir límites en la evolución de un rasgo, procesos de Ornstein-Uhlenbeck (que simulan selección estabilizadora, pudiendo afectar la similitud entre especies derivadas y ancestrales; e.g. Garland et al. 1993; Blomberg et al. 2003), evolución convergente, desplazamiento de caracteres, etc. De forma similar, si la tasa de evolución aumentó de forma drástica en un pasado reciente, entonces la magnitud de la señal podría ser baja.

En ese sentido, se puede manipular la longitud de las ramas en un árbol para simular distintos modelos evolutivos. Por ejemplo, un modelo de movimiento Browniano con todas las ramas del árbol del mismo tamaño es equivalente a un modelo de especiación (asumiendo que todas las especies [actuales y extintas] están incluidas en el análisis). Blomberg et al. (2003) propusieron dos transformaciones con sentido biológico, una basada en el modelo Ornstein-Uhlenbeck (OU) de selección estabilizadora, y otra basada en un modelo donde la tasa de
evolución de un caracter puede acelerar o desacelerar en el tiempo (modelo ACDC; e.g., como puede ocurrir durante o después de un evento de radiación adaptativa). Del mismo modo, variaciones en las tasas evolutivas pueden ser simuladas y/o controladas alterando la longitud de las ramas en distintas partes de una filogénesis. Por ejemplo, Garland & Ives (2000) mostraron que el grupo de paseriformes presentan una tasa de evolución de caracteres relativamente lenta, tanto para el tamaño corporal como para el metabolismo basal específico, respecto a otras aves. Esos métodos son útiles no solamente para comprender los procesos subyacentes que determinan los cambios fenotípicos, sino que también le permiten al investigador determinar qué modelos evolutivos se ajustan mejor a una base de datos dada (Pagel 1999; Freckleton et al. 2002; Blomberg et al. 2003).

Estimación de fenotipos ancestrales y predicciones para nuevas especies

Basado en datos sobre el promedio fenotípico en una serie de especies e información sobre la historia evolutiva de esas especies, se puede usar un algoritmo en particular (e.g., parsimonia, modelos de máxima verosimilitud) para inferir el probable fenotipo de los ancestros, i.e., de los nodos intermedios en el árbol (Schluter et al. 1997; Garland et al. 1999). Estas reconstrucciones permiten inferir donde posiblemente surgió un caracter en un determinado lado y/o si dicho caracter apareció en más de una oportunidad. Una vez que los valores en los nodos han sido estimados, pueden ser calculados los cambios fenotípicos asociados a las ramas descendientes, lo que permite inferir la dirección y magnitud de cambios evolutivos pasados, cambios correlacionados en dos o más rasgos, elucidación de la secuencia de eventos involucrados en la evolución de rasgos complejos, y poner a prueba si la existencia de un estado particular en un rasgo predispone cambios en otros rasgos en una dirección en particular (e.g., véase Pagel 1999).

 Nótese que al calcular los contrastes filogenéticamente independientes, los valores calculados para los nodos internos (véase arriba y Fig. 2) no son estimaciones óptimas de condiciones ancestrales (i.e. considerando toda la información del árbol), son simplemente valores intermedios en la obtención de una base de datos de $n-1$ contrastes. La única excepción es el valor estimado para el nodo basal del árbol (nodo 1 en Fig. 2; Garland et al. 1999). Sin embargo, se puede fijar cualquier nodo intermedio como el nodo basal de la filogenía, obteniendo así una estimación fenotípica válida para ese nodo (Garland & Ives 2000). Además, de esta forma se pueden calcular los errores estándar y los intervalos de confianza para dicha estimación (Garland et al. 1999), los cuales son equivalentes a los valores obtenidos mediante los modelos de máxima verosimilitud pre-
sentados por Schluter et al. (1997). Para bases de datos con pocas especies, se encuentra con frecuencia que los intervalos de confianza del 95% son extremadamente amplios, por lo que la estimación de un carácter ancestral no es exactamente precisa (véase Fig. 8 en Schluter et al. 1997; Fig. 2 en Garland et al. 1999). En bases de datos grandes, los intervalos de confianza son típicamente más estrechos. Sin embargo, todos estos procedimientos llevan implícito un modelo de evolución fenotípica Browniana, y las estimaciones pueden alejarse mucho de la realidad si es que ha ocurrido evolución direccional hacia un sentido en particular (e.g., véase Fig. 3 en Garland et al. 1999).

Reconfigurar el árbol filogenético al calcular los contrastes independientes también permite estimar los valores ancestrales (Garland et al. 1999; Garland & Ives 2000) en cualquier nivel de una rama en particular, no solamente en los nodos. Es decir, si se reconfigura el árbol de forma que el nodo basal es un punto arbitrario a lo largo de una rama, entonces las estimaciones del rasgo mismo y su intervalo de confianza se dan para un ancestro hipotético en aquel punto de su historia evolutiva.

Un problema similar corresponde a la estimación del fenotipo probable de una nueva especie (existente o extinta). Si la especie hipotética está estrechamente relacionada con alguna especie previamente medida, entonces se puede predecir su fenotipo y el margen de error asociado. Tal como en cualquier proceso de inferencia, la precisión de las predicciones va a depender de la cantidad de información disponible. Nuevamente, para estos propósitos es posible reconfigurar el árbol (y el nodo basal), aunque en este caso se sustituyen los intervalos de confianza por intervalos de predicción, que incluyen un factor extra, asociado a la longitud de la rama conducente a la nueva especie (véanse Garland & Ives 2000).

Estimación de intervalos de confianza y de predicción en estudios alométricos

Pueden ser empleados los métodos estadísticos filogenéticos para estimar intervalos de confianza o de predicción para una variable dependiente en una regresión (Garland & Ives 2000), tal como en estudios alométricos, un problema frecuente en la biología comparativa. Los métodos propuestos pueden incrementar considerablemente la potencia para detectar, por ejemplo, si una especie en particular difiere de lo predicho basado en ecuaciones alométricas. A medida que la información filogenética se hace más detallada, los intervalos de confianza y/o de predicción presentan mayor precisión, aumentando la potencia estadística de cualquier prueba. Eso es importante dado que muchos investigadores evitan los métodos filogenéticos bajo el pretexto de que esos tienden a
reducir la significancia estadística de múltiples factores. Ademá, estos nuevos métodos permiten ajustar las regresiones obtenidas filogenéticamente a los datos originales (véase Garland & Ives 2000), pudiendo revelar patrones interesantes ignorados previamente.

Precauciones y perspectivas para el futuro

Cuando se emplean métodos comparativos filogenéticos en estudios interespecíficos, el modelo estadístico resultante es complejo, consistiendo de tres partes: 1) una hipótesis sobre los patrones de especiación y tiempos de divergencia para las especies consideradas (i.e. información sobre topología del árbol filogenético y el largo de las ramas), 2) el supuesto de un modelo de evolución fenotípica en particular, que permite inferir patrones de similitud entre especies dada una cierta filogenia y además generar distribuciones nulas (en uno o más rasgos) para pruebas de hipótesis; y 3) una prueba estadística (e.g. un modelo de regresión específico) que permite inferir patrones adaptativos, como por ejemplo, la evolución correlacionada entre distintos rasgos. Por lo tanto, cualquier conclusión basada en este tipo de análisis va a depender de que tan adecuados son los supuestos en cada una de esas partes, sean o no definidos explícitamente o no.

Los árboles filogenéticos son solamente estimaciones de las relaciones evolutivas existentes entre organismos. De este modo, las conclusiones derivadas de cualquier análisis filogenético están sujetas a modificaciones si la información adicional altera el ordenamiento de las especies. Puede ser usada información taxonómica para inferir relaciones filogenéticas (e.g., Fig. 1B), pero dicho procedimiento debe ser efectuado con cautela porque en muchos casos la taxonomía no necesariamente refleja una filogenia correcta. Además, árboles basados en clasificaciones taxonómicas generalmente presentan múltiples polimorfías que afectan la potencia del modelo estadístico, aunque eso puede ser normalmente resuelto tal como se discute en Purvis & Garland (1993) (véanse también Garland & Díaz-Huarte 1999).

Los nuevos métodos filogenéticos han cambiado radicalmente el modus operandi en campos como la fisiología comparativa, ecológica y evolutiva. Además, estos métodos han permitido contestar nuevas preguntas en diversas áreas. Dado nuestra mayor comprensión de los mecanismos evolutivos, de cómo se relacionan las especies, y sus consecuencias en inferencias estadísticas, no emplear esos métodos en estudios comparativos es, en la actualidad, simplemente inaceptable. Este mensaje, a pesar de ser fundamental, todavía no se hace entender en sectores más mecanísticos de la biología. En el futuro, el empleo de métodos estadísticos filogenéticos será un procedimiento de rutina.
como ocurre con la estadística convencional hoy en día, y los estudios comparativos que no consideren las relaciones filogenéticas entre las especies terminarán por ser considerados inconclusos e inaceptables para publicación.

Los resultados basados en métodos estadísticos filogenéticos siempre deberán ser interpretados en un modo u otro de aquellos obtenidos por métodos convencionales. Esto se debe porque un método considera una filogenia jerárquica y, por lo tanto, que los rasgos de distintas especies covarían, mientras que el otro asume una filogenia de tipo estrella (y ninguna covarianza; véase Fig. 1). Este fenómeno afecta todos los parámetros a ser estimados. El resultado más correcto va a depender de qué filogenia (jerárquica vs. estrella) describa mejor las relaciones entre las especies estudiadas, y del modelo evolutivo por los cuales evolucionaron dichos rasgos. A pesar de que la mayoría de las especies deben relacionarse de una forma jerárquica, eso no implica que una filogenia de ese tipo sea una mejor alternativa para analizar los datos. Por ejemplo, si la evolución fenotípica se dio en una ventana muy corta de tiempo en un pasado reciente, entonces el árbol más apropiado sería uno con ramas terminales largas y ramas intermedias cortas, i.e., asemejándose más a una filogenia tipo estrella. Esta filogenia puede ser obtenida mediante diversas transformaciones en la longitud de las ramas, y el árbol más adecuado para una base de datos en particular puede ser obtenido basándose en procedimientos estadísticos objetivos (Freckleton et al. 2002; Blomberg et al. 2003). Por lo tanto, un investigador no necesitaría decidir a priori si es que va a tomar en cuenta los resultados de análisis filogenéticos o convencionales. Más bien, él debe tomar en cuenta los resultados obtenidos con el árbol que mejor se ajusta a los datos, lo que en algunos casos significa una filogenia tipo estrella o algo parecido, aunque esos casos son relativamente raros (Blomberg et al. 2003).

LITERATURA CITADA

